Crossref book-chapter
Springer US
Advances in Computer Games (297)
Bibliography

Enzenberger, M. (2004). Evaluation in Go by a Neural Network Using Soft Segmentation. Advances in Computer Games, 97–108.

Authors 1
  1. M. Enzenberger (first)
References 13 Referenced 12
  1. Bouzy, B. and Cazenave, T. (2001). Computer Go: an AI oriented survey. Artificial Intelligence, 132 (1): 39–103. (10.1016/S0004-3702(01)00127-8) / Artificial Intelligence by B Bouzy (2001)
  2. Chen, Z. (2002). Semi-empirical quantitative theory of Go. ICGA Journal, 25 (4): 211–218. (10.3233/ICG-2002-25404) / ICGA Journal by Z Chen (2002)
  3. Enzenberger, M. (1996). The integration of a priori knowledge into a Go playing neural network. http://www.markus-enzenberger.de/neurogo.html
  4. Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images IEEE Transactions on Pattern Analysis and Machine Intelligence, 6: 721–741. (10.1109/TPAMI.1984.4767596) / IEEE Transactions on Pattern Analysis and Machine Intelligence by S Geman (1984)
  5. GNuGo (2001). GnuGo Go program. http://www.gnu.org/software/gnugo/
  6. Müller, M. and Gasser, R. (1996). Experiments in computer Go endgames. In Nowakowski, R., editor, Gaines of No Chance, volume 29 of MSRI Publications, pages 273–284. Cambridge University Press, New York, NY. / Gaines of No Chance, volume 29 of MSRI Publications by M Müller (1996)
  7. NNGS (2001). No name Go server. http://nngs.cosmic.org .
  8. Reitman, J. (1976). Skilled perception in Go. Cognitive Psychology, 8: 336–356. (10.1016/0010-0285(76)90011-6) / Cognitive Psychology by J Reitman (1976)
  9. Schaeffer, J. (2001). A gamut of games. AI Magazine, 22 (3): 29–46. / AI Magazine by J Schaeffer (2001)
  10. Schraudolph, N. N., Dayan, P., and Sejnowski, T. J. (1994). Temporal difference learning of position evaluation in the game of Go. In Advances in Neural Information Processing 6. Morgan Kaufmann, San Francisco, CA. / Advances in Neural Information Processing by NN Schraudolph (1994)
  11. Sensei (2003). A glossary of go terms. http://senseis.xmp.net/?GoTerms.
  12. Sutton, R. (1988). Learning to predict by the method of temporal differences. Machine Learning, 3: 9–44. / Machine Learning by R Sutton (1988)
  13. Tajima, M. and Sanechika, N. (1998). Estimating the possible omission number for groups in Go by the number of n-th dame. In van den Herik, H. J. and Iida, H., editors, Computers and Games, First International Conference, volume 1558 of Lecture Notes in Computer Science, pages 265–281. Springer-Verlag, Berlin, Germany. / Computers and Games, First International Conference, volume 1558 of Lecture Notes in Computer Science by M Tajima (1998)
Dates
Type When
Created 12 years, 3 months ago (May 11, 2013, 10:46 a.m.)
Deposited 6 years, 3 months ago (May 12, 2019, 4:35 p.m.)
Indexed 5 months, 1 week ago (March 24, 2025, 3:24 a.m.)
Issued 21 years, 8 months ago (Jan. 1, 2004)
Published 21 years, 8 months ago (Jan. 1, 2004)
Published Print 21 years, 8 months ago (Jan. 1, 2004)
Funders 0

None

@inbook{Enzenberger_2004, title={Evaluation in Go by a Neural Network Using Soft Segmentation}, ISBN={9780387357065}, url={http://dx.doi.org/10.1007/978-0-387-35706-5_7}, DOI={10.1007/978-0-387-35706-5_7}, booktitle={Advances in Computer Games}, publisher={Springer US}, author={Enzenberger, M.}, year={2004}, pages={97–108} }