Crossref
book-chapter
Springer Berlin Heidelberg
Lecture Notes in Computer Science (297)
References
23
Referenced
40
-
R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow Problem. SIAM J. Comput., 18:939–954, 1989.
(
10.1137/0218065
) / SIAM J. Comput. by R. K. Ahuja (1989) -
R. J. Anderson and J. C. Setubal. Goldberg's Algorithm for the Maximum Flow in Perspective: a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 1–18. AMS, 1993.
(
10.1090/dimacs/012/01
) -
J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a Maximum Flow be Computed in o(nm) Time? In Proc. ICALP, 1990.
(
10.1007/BFb0032035
) -
J. Cheriyan and S. N. Maheshwari. Analysis of Preflow Push Algorithms for Maximum Netwrok Flow. SIAM J. Comput., 18:1057–1086, 1989.
(
10.1137/0218072
) / SIAM J. Comput. by J. Cheriyan (1989) - B. V. Cherkassky. A Fast Algorithm for Computing Maximum Flow in a Network. In A. V. Karzanov, editor, Collected Papers, Issue 3: Combinatorial Methods for Flow Problems, pages 90–96. The Institute for Systems Studies, Moscow, 1979. In Russian. English translation appears in AMS Trans., Vol. 158, pp. 23–30, 1994. / Collected Papers, Issue 3: Combinatorial Methods for Flow Problems by B. V. Cherkassky (1979)
- G. B. Dantzig. Application of the Simplex Method to a Transportation Problem. In T. C. Koopmans, editor, Activity Analysis and Production and Allocation, pages 359–373. Wiley, New York, 1951. / Activity Analysis and Production and Allocation by G. B. Dantzig (1951)
- G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Princeton, NJ, 1962. / Linear Programming and Extensions by G. B. Dantzig (1962)
-
U. Derigs and W. Meier. Implementing Goldberg's Max-Flow Algorithm — A Computational Investigation. ZOR — Methods and Models of Operations Research, 33:383–403, 1989.
(
10.1007/BF01415937
) / ZOR — Methods and Models of Operations Research by U. Derigs (1989) -
U. Derigs and W. Meier. An Evaluation of Algorithmic Refinements and Proper Data-Structures for the Preflow-Push Approach for Maximum Flow. In ASI Series on Computer and System Sciences, volume 8, pages 209–223. NATO, 1992.
(
10.1007/978-3-642-77489-8_3
) - E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl., 11:1277–1280, 1970. / Soviet Math. Dokl. by E. A. Dinic (1970)
-
J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach., 19:248–264, 1972.
(
10.1145/321694.321699
) / J. Assoc. Comput. Mach. by J. Edmonds (1972) - L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962. / Flows in Networks by L. R. Ford Jr. (1962)
- A. V. Goldberg. A New Max-Flow Algorithm. Technical Report MIT/LCS/TM-291, Laboratory for Computer Science, M.I.T., 1985.
- A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science, M.I.T., 1987).
-
A. V. Goldberg, É. Tardos, and R. E. Tarjan. Network Flow Algorithms. In B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, editors, Flows, Paths, and VLSI Layout, pages 101–164. Springer Verlag, 1990.
(
10.21236/ADA214689
) -
A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. In Proc. 18th Annual ACM Symposium on Theory of Computing, pages 136–146, 1986.
(
10.1145/12130.12144
) -
A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921–940, 1988.
(
10.1145/48014.61051
) / J. Assoc. Comput. Mach. by A. V. Goldberg (1988) -
D. Goldfarb and M. D. Grigoriadis. A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow. Annals of Oper. Res., 13:83–123, 1988.
(
10.1007/BF02288321
) / Annals of Oper. Res. by D. Goldfarb (1988) -
D. S. Johnson and C. C. McGeoch, editors. Network Flows and Matching: First DIMACS Implementation Challenge. AMS, 1993.
(
10.1090/dimacs/012
) - A. V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok., 15:434–437, 1974. / Soviet Math. Dok. by A. V. Karzanov (1974)
- V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 157–164, 1992.
-
Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Maximum Flow Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 19–42. AMS, 1993.
(
10.1090/dimacs/012/02
) -
R. E. Tarjan. A Simple Version of Karzanov's Blocking Flow Algorithm. Operations Research Letters, 2:265–268, 1984.
(
10.1016/0167-6377(84)90076-2
) / Operations Research Letters by R. E. Tarjan (1984)
Dates
Type | When |
---|---|
Created | 13 years, 6 months ago (Feb. 26, 2012, 12:15 p.m.) |
Deposited | 4 years, 9 months ago (Nov. 17, 2020, 4:27 p.m.) |
Indexed | 3 months, 2 weeks ago (May 18, 2025, 2:06 a.m.) |
Issued | 30 years, 8 months ago (Jan. 1, 1995) |
Published | 30 years, 8 months ago (Jan. 1, 1995) |
Published Online | 20 years, 3 months ago (June 1, 2005) |
Published Print | 30 years, 8 months ago (Jan. 1, 1995) |
@inbook{Cherkassky_1995, title={On implementing push-relabel method for the maximum flow problem}, ISBN={9783540492450}, ISSN={1611-3349}, url={http://dx.doi.org/10.1007/3-540-59408-6_49}, DOI={10.1007/3-540-59408-6_49}, booktitle={Integer Programming and Combinatorial Optimization}, publisher={Springer Berlin Heidelberg}, author={Cherkassky, Boris V. and Goldberg, Andrew V.}, year={1995}, pages={157–171} }