Crossref book-chapter
Springer Berlin Heidelberg
Topics in Current Chemistry (297)
Bibliography

Carraro, M., Sartorel, A., Toma, F. M., Puntoriero, F., Scandola, F., Campagna, S., Prato, M., & Bonchio, M. (2011). Artificial Photosynthesis Challenges: Water Oxidation at Nanostructured Interfaces. Photocatalysis, 121–150.

Authors 8
  1. Mauro Carraro (first)
  2. Andrea Sartorel (additional)
  3. Francesca Maria Toma (additional)
  4. Fausto Puntoriero (additional)
  5. Franco Scandola (additional)
  6. Sebastiano Campagna (additional)
  7. Maurizio Prato (additional)
  8. Marcella Bonchio (additional)
References 149 Referenced 33
  1. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825 (10.1126/science.1128186) / Science by J Yano (2006)
  2. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838 (10.1126/science.1093087) / Science by KN Ferreira (2004)
  3. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of Photosystem II. Nature 438:1040–1044 (10.1038/nature04224) / Nature by B Loll (2005)
  4. Haumann M, Liebisch P, Müller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310:1019–1021 (10.1126/science.1117551) / Science by M Haumann (2005)
  5. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of Photosystem II. Chem Rev 106:4455–4483 (10.1021/cr0204294) / Chem Rev by JP McEvoy (2006)
  6. Brudvig GW (ed) (2008) Special issue on the role of manganese in Photosystem II. Coord Chem Rev 252:231–468 (10.1016/j.ccr.2007.08.028) / Coord Chem Rev by GW Brudvig (2008)
  7. Hammarstrom L, Hammes-Schiffer S (eds) (2009) Special issue on artificial photosynthesis and solar fuels. Acc Chem Res 42:1859–2029 (10.1021/ar900267k) / Acc Chem Res by L Hammarstrom (2009)
  8. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution-I, a linear four step mechanism. Photochem Photobiol 11:457–475 (10.1111/j.1751-1097.1970.tb06017.x) / Photochem Photobiol by B Kok (1970)
  9. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145 (10.1021/ar00051a007) / Acc Chem Res by AJ Bard (1995)
  10. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735 (10.1073/pnas.0603395103) / Proc Natl Acad Sci USA by NS Lewis (2006)
  11. Armaroli A, Balzani V (2007) The future of energy supplies: challenges and opportunities. Angew Chem Int Ed 46:52–66 (10.1002/anie.200602373) / Angew Chem Int Ed by A Armaroli (2007)
  12. Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1:7 (10.1038/nchem.141) / Nat Chem by HB Gray (2009)
  13. Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898 (10.1021/ar900209b) / Acc Chem Res by D Gust (2009)
  14. Nocera DG, Guldi DM (eds) (2009) Special issue on renewable energy. Chem Soc Rev 38:1–293 (10.1039/B820660K) / Chem Soc Rev by DG Nocera (2009)
  15. Krassen H, Ott S, Heberle J (2011) In vitro hydrogen production using energy from the sun. Phys Chem Chem Phys 13:47–57 (10.1039/c0cp01163k) / Phys Chem Chem Phys by H Krassen (2011)
  16. Huynh MHV, Dattelbaum DM, Meyer TJ (2005) Exited state electron and energy transfer in molecular assemblies. Coord Chem Rev 249:457–483 (10.1016/j.ccr.2004.07.005) / Coord Chem Rev by MHV Huynh (2005)
  17. Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58 (10.1002/cssc.200700087) / ChemSusChem by V Balzani (2008)
  18. Wasielewski M (2009) Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc Chem Res 42:1910–1921 (10.1021/ar9001735) / Acc Chem Res by M Wasielewski (2009)
  19. Albinsson B, Mårtensson J (2008) Long-range electron and excitation energy transfer in donor–bridge–acceptor systems. J Photochem Photobiol C 9:138–155 (10.1016/j.jphotochemrev.2008.01.002) / J Photochem Photobiol C by B Albinsson (2008)
  20. Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, Ott S, Stensjö K, Styring S, Sundström V, Hammarström L (2009) Biomimetic and microbial approaches to solar fuel generation. Acc Chem Res 42:1899–1909 (10.1021/ar900127h) / Acc Chem Res by A Magnuson (2009)
  21. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48 (10.1021/ar9801301) / Acc Chem Res by D Gust (2001)
  22. Hambourger M, Kodis G, Vaughn MD, Moore GF, Gust D, Moore AL, Moore TA (2009) Solar energy conversion in a photoelectrochemical biofuel cell. Dalton Trans 9979–9989 (10.1039/b912170f)
  23. Benniston AC, Harriman A (2008) Artificial photosynthesis. Mater Today 11:26–34 (10.1016/S1369-7021(08)70250-5) / Mater Today by AC Benniston (2008)
  24. Huynh MHV, Meyer TJ (2007) Proton-coupled electron transfer. Chem Rev 107:5004–5064 (10.1021/cr0500030) / Chem Rev by MHV Huynh (2007)
  25. Meyer TJ, Huynh MHV, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by Photosystem II. Angew Chem Int Ed 46:5284–5304 (10.1002/anie.200600917) / Angew Chem Int Ed by TJ Meyer (2007)
  26. Eisenberg R, Gray HB guest editors (2008) Special issue on forum on making oxygen. Inorg Chem 47:1697–1861 (10.1021/ic800155g) / Inorg Chem by R Eisenberg (2008)
  27. Meyer TJ (2008) Catalysis: the art of splitting water. Nature 451:778–779 (10.1038/451778a) / Nature by TJ Meyer (2008)
  28. Kiwi J, Grätzel M (1979) Ruthenium oxide, a suitable redox catalyst to mediate oxygen production from water. Chimia 33:289–291 / Chimia by J Kiwi (1979)
  29. Kiwi J, Grätzel M (1979) Colloidal redox catalysts for evolution of oxygen and for light-induced evolution of hydrogen from water. Angew Chem Int Ed 18:624–626 (10.1002/anie.197906241) / Angew Chem Int Ed by J Kiwi (1979)
  30. Kalayanasundaram K, Grätzel M (1979) Cyclic cleavage of water into H2 and O2 by visible light with coupled redox catalysts. Angew Chem Int Ed 18:701–702 (10.1002/anie.197907011) / Angew Chem Int Ed by K Kalayanasundaram (1979)
  31. Kiwi J, Borgarello E, Pellizzetti E, Visca M, Grätzel M (1980) Cyclic water cleavage by visible light: drastic improvement of yield of H2 and O2 with bifunctional redox catalysts. Angew Chem Int Ed 19:646–648 (10.1002/anie.198006461) / Angew Chem Int Ed by J Kiwi (1980)
  32. Harriman A, Richoux MC, Christensen PA, Mosseri S, Neta P (1987) Redox reactions with colloidal metal oxides. Comparison of radiation-generated and chemically generated RuO2·2H2O. J Chem Soc Faraday Trans 1 83:3001–3014 (10.1039/f19878303001) / J Chem Soc Faraday Trans 1 by A Harriman (1987)
  33. Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans 1 84:2795–2806 (10.1039/f19888402795) / J Chem Soc Faraday Trans 1 by A Harriman (1988)
  34. Mills A (1989) Heterogeneous redox catalysts for oxygen and chlorine evolution. Chem Soc Rev 18:285–316 (10.1039/cs9891800285) / Chem Soc Rev by A Mills (1989)
  35. Mills A, Duckmanton PA, Reglinski J (2010) A simple, novel method for preparing an effective water oxidation catalyst. Chem Commun 46:2397–2398 (10.1039/b925784e) / Chem Commun by A Mills (2010)
  36. Puntoriero F, Sartorel A, Orlandi M, La Ganga G, Serroni S, Bonchio M, Scandola F, Campagna S (2011) Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coord Chem Rev. doi: 10.1016/j.ccr.2011.01.026 (10.1016/j.ccr.2011.01.026) / Coord Chem Rev by F Puntoriero (2011)
  37. Okeyoshi K, Yoshida R (2010) Oxygen-generating gel systems induced by visible light. Adv Funct Mater 20:708–714 (10.1002/adfm.200901166) / Adv Funct Mater by K Okeyoshi (2010)
  38. Pillai KC, Kumar AS, Zen JM (2000) J Mol Cat A Chem 160:277–285 (10.1016/S1381-1169(00)00262-4) / J Mol Cat A Chem by KC Pillai (2000)
  39. Kiwi J, Grätzel M (1978) Oxygen evolution from water via redox catalysis. Angew Chem Int Ed 17:860–861 (10.1002/anie.197808602) / Angew Chem Int Ed by J Kiwi (1978)
  40. Morris ND, Suzuki M, Mallouk TE (2004) Kinetics of electron transfer and oxygen evolution in the reaction of [Ru(bpy)3]3+ with colloidal iridium oxide. J Phys Chem A 108:9115–9119 (10.1021/jp0480145) / J Phys Chem A by ND Morris (2004)
  41. Hara M, Waraksa CC, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered tris(2,2’-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem A 104:5275–5280 (10.1021/jp000321x) / J Phys Chem A by M Hara (2000)
  42. Hoertz PG, Kim YI, Youngblood WJ, Mallouk TE (2007) Bidentate dicarboxylate capping groups and photosensitizers control the size of IrO2 nanoparticle catalysts for water oxidation. J Phys Chem B 111:6845–6856 (10.1021/jp070735r) / J Phys Chem B by PG Hoertz (2007)
  43. Yagi M, Tomita E, Salita S, Kuwabara T, Nagai K (2005) Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation. J Phys Chem B 109:21489–21491 (10.1021/jp0550208) / J Phys Chem B by M Yagi (2005)
  44. Nakagawa T, Bjorge NS, Murray RW (2009) Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J Am Chem Soc 131:15578–15579 (10.1021/ja9063298) / J Am Chem Soc by T Nakagawa (2009)
  45. Nakagawa T, Beasley CA, Murray RW (2009) Efficient electro-oxidation of water near its reversible potential by a mesoporous IrOx nanoparticle film. J Phys Chem C 113:12958–12961 (10.1021/jp9060076) / J Phys Chem C by T Nakagawa (2009)
  46. Hara M, Lean JT, Mallouk TE (2001) Photocatalytic oxidation of water by silica-supported tris(4,4’-dialkyl-2,2’-bipyridyl)ruthenium polymeric sensitizers and colloidal iridium oxide. Chem Mater 13:4668–4675 (10.1021/cm0104811) / Chem Mater by M Hara (2001)
  47. Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927 (10.1021/ja809108y) / J Am Chem Soc by WJ Youngblood (2009)
  48. La Ganga G, Nastasi F, Campagna S, Puntoriero F (2009) Dalton Trans 9997–9999 (10.1039/b907257h)
  49. Youngblood JW, Lee SHA, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42:1966–1973 (10.1021/ar9002398) / Acc Chem Res by JW Youngblood (2009)
  50. Han H, Frei H (2008) In situ spectroscopy of water oxidation at Ir oxide nanocluster driven by visible TiOCr charge-transfer chromophore in mesoporous silica. J Phys Chem C 112:16156–16159 (10.1021/jp803994d) / J Phys Chem C by H Han (2008)
  51. Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49:6405–6408 (10.1002/anie.201003110) / Angew Chem Int Ed by SD Tilley (2010)
  52. Shafirovich VY, Khannanov NK, Strelets VV (1980) Chemical and light-induced catalytic water oxidation. Nouv J Chim 4:81–84 / Nouv J Chim by VY Shafirovich (1980)
  53. Brunschwig BS, Chou MH, Creutz C, Ghosh P, Sutin N (1983) Mechanisms of water oxidation to oxygen: cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction. J Am Chem Soc 105:4832–4833 (10.1021/ja00352a050) / J Am Chem Soc by BS Brunschwig (1983)
  54. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075 (10.1126/science.1162018) / Science by MW Kanan (2008)
  55. Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt–phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114 (10.1039/b802885k) / Chem Soc Rev by MW Kanan (2009)
  56. Surendranath Y, Dincă M, Nocera DG (2009) Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc 131:2615–2620 (10.1021/ja807769r) / J Am Chem Soc by Y Surendranath (2009)
  57. Kanan MW, Yano J, Surendranath Y, Dinc M, Yachandra VK, Nocera DG (2010) Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy. J Am Chem Soc 132:13692–13701 (10.1021/ja1013344) / J Am Chem Soc by JG McAlpin (2010)
  58. Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132:16501–16509 (10.1021/ja106102b) / J Am Chem Soc by Y Surendranath (2010)
  59. McAlpin JG, Surendranath Y, Dincã M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132:6882–6883 (10.1021/ja1013344) / J Am Chem Soc by JG McAlpin (2010)
  60. Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131:3838–3839 (10.1021/ja900023k) / J Am Chem Soc by DA Lutterman (2009)
  61. Zong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co−Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132:4202–4207 (10.1021/ja908730h) / J Am Chem Soc by DK Zong (2010)
  62. Steinmiller EMP, Choi KS (2009) Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc Natl Acad Sci USA 106:20633–20636 (10.1073/pnas.0910203106) / Proc Natl Acad Sci USA by EMP Steinmiller (2009)
  63. Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721 (10.1021/ja064380l) / J Am Chem Soc by A Kay (2006)
  64. Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed 48:1841–1844 (10.1002/anie.200805534) / Angew Chem Int Ed by F Jiao (2009)
  65. Li Y, Hasin P, Wu Y (2010) NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv Mater 22:1926–1929 (10.1002/adma.200903896) / Adv Mater by Y Li (2010)
  66. Okuno Y, Yonemitsu O, Chiba Y (1983) Manganese dioxide as specific redox catalyst in the photosensitized oxygen generation from water. Chem Lett 12:815–818 (10.1246/cl.1983.815) / Chem Lett by Y Okuno (1983)
  67. Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922 (10.1039/b921820c) / Chem Commun by F Jiao (2010)
  68. Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O4.xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49:2233–2237 (10.1002/anie.200906745) / Angew Chem Int Ed by MM Najafpour (2010)
  69. Gersten SW, Samuels GJ, Meyer TJ (1982) Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J Am Chem Soc 104:4029–4030 (10.1021/ja00378a053) / J Am Chem Soc by SW Gersten (1982)
  70. Liu F, Conception JJ, Jurss JW, Cardolaccia T, Templeton JL, Meyer TJ (2008) Mechanisms of water oxidation from the blue dimer to Photosystem II. Inorg Chem 47:1727–1752 (10.1021/ic701249s) / Inorg Chem by F Liu (2008)
  71. Jurss JW, Concepcion JC, Norris MR, Templeton JL, Meyer TJ (2010) Surface catalysis of water oxidation by the blue ruthenium dimer. Inorg Chem 49:3980–3982 (10.1021/ic100469x) / Inorg Chem by JW Jurss (2010)
  72. Deng Z, Tseng HW, Zong R, Wang D, Thummel RP (2008) Preparation and study of a family of dinuclear Ru(II) complexes that catalyze the decomposition of water. Inorg Chem 47:1835–1848 (10.1021/ic7010875) / Inorg Chem by Z Deng (2008)
  73. Wada T, Tsuge K, Tanaka K (2001) Syntheses and redox properties of bis(hydroxoruthenium) complexes with quinone and bipyridine ligands. Water-oxidation catalysis. Inorg Chem 40:329–337 (10.1021/ic000552i) / Inorg Chem by T Wada (2001)
  74. Duan L, Xu Y, Zhang P, Wang M, Sun L (2010) Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system. Inorg Chem 49:209–215 (10.1021/ic9017486) / Inorg Chem by L Duan (2010)
  75. Xu Y, Duan L, Tong L, Akermark B, Sun L (2010) Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chem Commun 46:6506–6508 (10.1039/c0cc01250e) / Chem Commun by Y Xu (2010)
  76. Borzoglian F, Mola J, Rodriguez M, Romero I, Nenet-Buchholtz J, Fontrodona X, Cramer CJ, Gagliardi L, Llobet A (2009) The Ru−Hbpp water oxidation catalyst. J Am Chem Soc 131:15176–15187 (10.1021/ja9036127) / J Am Chem Soc by F Borzoglian (2009)
  77. Sartorel A, Carraro M, Scorrano G, De Zorzi R, Geremia S, McDaniel ND, Bernhard S, Bonchio M (2008) Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36] 8-: a totally inorganic oxygen-evolving catalyst. J Am Chem Soc 130:5006–5007 (10.1021/ja077837f) / J Am Chem Soc by A Sartorel (2008)
  78. Geletii YV, Botar B, Köegerler P, Hillesheim DA, Musaev DG, Hill CL (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew Chem Int Ed 47:3896–3899 (10.1002/anie.200705652) / Angew Chem Int Ed by YV Geletii (2008)
  79. McDaniel ND, Coughlin MJ, Tinker LL, Bernhard S (2008) Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J Am Chem Soc 130:210–217 (10.1021/ja074478f) / J Am Chem Soc by ND McDaniel (2008)
  80. Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) A functional model for O–O bond formation by the O2-evolving complex in Photosystem II. Science 283:1524–1527 (10.1126/science.283.5407.1524) / Science by J Limburg (1999)
  81. Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of Photosystem II. Coord Chem Rev 252:444–455 (10.1016/j.ccr.2007.06.002) / Coord Chem Rev by CW Cady (2008)
  82. Tagore R, Crabtree RH, Brudvig GW (2008) Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg Chem 47:1815–1823 (10.1021/ic062218d) / Inorg Chem by R Tagore (2008)
  83. Dismukes GC, Brimblecomb R, Felton GA, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4−cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943 (10.1021/ar900249x) / Acc Chem Res by GC Dismukes (2009)
  84. Robinson DM, Go YB, Greenblatt M, Dismukes CG (2010) Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J Am Chem Soc 132:11467–11469 (10.1021/ja1055615) / J Am Chem Soc by DM Robinson (2010)
  85. Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular catalyst based on abundant metals. Science 328:342–345 (10.1126/science.1185372) / Science by Q Yin (2010)
  86. Ellis WC, McDaniel ND, Bernhard S, Collins TJ (2010) Fast water oxidation using iron. J Am Chem Soc 132:10990–10991 (10.1021/ja104766z) / J Am Chem Soc by WC Ellis (2010)
  87. Howells AR, Sankarraj A, Shannon C (2004) A diruthenium-substituted polyoxometalate as an electrocatalyst for oxygen generation. J Am Chem Soc 126:12258–12259 (10.1021/ja0495821) / J Am Chem Soc by AR Howells (2004)
  88. Sartorel A, Mirò P, Salvadori E, Romain S, Carraro M, Scorrano G, Di Valentin M, Llobet A, Bo C, Bonchio M (2009) Water oxidation at a tetraruthenate core stabilized by polyoxometalate ligands: experimental and computational evidence to trace the competent intermediates. J Am Chem Soc 131:16051–16053 (10.1021/ja905067u) / J Am Chem Soc by A Sartorel (2009)
  89. Geletii YV, Besson C, Hou Y, Yin Q, Musaev DG, Quiñonero D, Cao R, Hardcastle KI, Proust A, Kögerler P, Hill CL (2009) Structural, physicochemical, and reactivity properties of an all-inorganic, highly active tetraruthenium homogeneous catalyst for water oxidation. J Am Chem Soc 131:17360–17370 (10.1021/ja907277b) / J Am Chem Soc by YV Geletii (2009)
  90. Quiñonero D, Kaledin AL, Kuznetsov AE, Geletii YV, Besson C, Hill CL, Musaev DG (2010) Computational studies of the geometry and electronic structure of an all-inorganic and homogeneous tetra-Ru-polyoxotungstate catalyst for water oxidation and its four subsequent one-electron oxidized forms. J Phys Chem A 114:535–542 (10.1021/jp907471h) / J Phys Chem A by D Quiñonero (2010)
  91. Cao R, Ma H, Geletii YV, Hardcastle KI, Hill CL (2009) Structurally characterized Iridium(III)-containing polytungstate and catalytic water oxidation activity. Inorg Chem 48:5596–5598 (10.1021/ic900538g) / Inorg Chem by R Cao (2009)
  92. Kohl SW, Weiner L, Schwartsburd L, Konstantinovski L, Shimon LJW, Ben-David Y, Iron MA, Milstein D (2009) Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex. Science 324:74–77 (10.1126/science.1168600) / Science by SW Kohl (2009)
  93. Gorlin Y, Jamarillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614 (10.1021/ja104587v) / J Am Chem Soc by Y Gorlin (2010)
  94. Yamazaki H, Shouji A, Kajita M, Yagi M (2010) Electrocatalytic and photocatalytic water oxidation to dioxygen based on metal complexes. Coord Chem Rev 254:2483–2491 (10.1016/j.ccr.2010.02.008) / Coord Chem Rev by H Yamazaki (2010)
  95. Yagi M, Toda M, Yamada S, Yamazaki H (2010) An artificial model of photosynthetic Photosystem II: visible-light-derived O2 production from water by a di-μ-oxo-bridged manganese dimer as an oxygen evolving center. Chem Commun 46:8594–8596 (10.1039/c0cc03114c) / Chem Commun by M Yagi (2010)
  96. Cape JL, Hurst JK (2008) Detection and mechanistic relevance of transient ligand radicals formed during [Ru(bpy)2(OH2)]2O4+-catalyzed water oxidation. J Am Chem Soc 130:827–829 (10.1021/ja077276s) / J Am Chem Soc by JL Cape (2008)
  97. Brimblecomb R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132:2892–2894 (10.1021/ja910055a) / J Am Chem Soc by R Brimblecomb (2010)
  98. Li L, Duan L, Xu Y, Gorlov M, Hagfeldt A, Sun L (2010) A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem Commun 46:7307–7309 (10.1039/c0cc01828g) / Chem Commun by L Li (2010)
  99. Xu Y, Fischer A, Duan L, Tong L, Gabrielsson E, Akermark B, Sun L (2010) Chemical and light-driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex. Angew Chem Int Ed 49:8934–8937 (10.1002/anie.201004278) / Angew Chem Int Ed by Y Xu (2010)
  100. Nam YS, Magyar AP, Lee D, Kim JW, Yun DS, Park H, Pollom TS, Weitz DA, Belcher AM (2010) Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat Nanotechnol 5:340–344 (10.1038/nnano.2010.57) / Nat Nanotechnol by YS Nam (2010)
  101. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277 (10.1016/0010-8545(88)80032-8) / Coord Chem Rev by A Juris (1988)
  102. Meyer TJ (1986) Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure Appl Chem 58:1193–1206 (10.1351/pac198658091193) / Pure Appl Chem by TJ Meyer (1986)
  103. Balzani V, Scandola F (1991) Supramolecular photochemistry. Horwood, Chichester
  104. Geletii YV, Huang Z, Hou Y, Musaev DG, Lian T, Hill CL (2009) Homogeneous light-driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands. J Am Chem Soc 131:7522–7523 (10.1021/ja901373m) / J Am Chem Soc by YV Geletii (2009)
  105. Besson C, Huang Z, Geletii YV, Lense S, Hardcastle KI, Musaev DG, Lian T, Proust A, Hill CL (2010) Cs9[(γ-PW10O36)2Ru4O5(OH)(H2O)4], a new all-inorganic, soluble catalyst for the efficient visible-light-driven oxidation of water. Chem Commun 46:2784–2786 (10.1039/b926064a) / Chem Commun by C Besson (2010)
  106. Orlandi M, Argazzi R, Sartorel A, Carraro M, Scorrano G, Bonchio M, Scandola F (2010) Ruthenium polyoxometalate water splitting catalyst: very fast hole scavenging from photogenerated oxidants. Chem Commun 46:3152–3154 (10.1039/b926823e) / Chem Commun by M Orlandi (2010)
  107. Campagna S, Denti G, Serroni S, Juris A, Venturi M, Ricevuto V, Balzani V (1995) Dendrimers of nanometer size based on metal complexes: luminescent and redox-active polynuclear metal complexes containing up to twenty-two metal centers. Chem Eur J 1:211–221 (10.1002/chem.19950010404) / Chem Eur J by S Campagna (1995)
  108. Serroni S, Juris A, Venturi M, Campagna S, Resino IR, Denti G, Credi A, Balzani V (1997) Polynuclear metal complexes of nanometre size. A versatile synthetic strategy leading to luminescent and redox-active dendrimers made of an osmium(II)-based core and ruthenium(II)-based units in the branches. J Mater Chem 7:1227–1236 (10.1039/a700426e) / J Mater Chem by S Serroni (1997)
  109. Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Designing dendrimers based on transition-metal complexes. Light-harvesting properties and predetermined redox patterns. Acc Chem Res 31:26–34 (10.1021/ar950202d) / Acc Chem Res by V Balzani (1998)
  110. Venturi M, Serroni S, Juris A, Campagna S, Balzani V (1998) Electrochemical and photochemical properties of metal-containing dendrimers. Top Curr Chem 197:193–228 (10.1007/3-540-69779-9_6) / Top Curr Chem by M Venturi (1998)
  111. Serroni S, Campagna S, Puntoriero F, Di Pietro C, Loiseau F, McClenaghan ND (2001) Dendrimers based on ruthenium(II) and osmium(II) polypyridine complexes and the approach of using complexes as ligands and complexes as metals. Chem Soc Rev 30:367–375 (10.1039/b008670n) / Chem Soc Rev by S Serroni (2001)
  112. Puntoriero F, Serroni S, Galletta M, Juris A, Licciardello A, Chiorboli C, Campagna S, Scandola F (2005) A new heptanuclear dendritic ruthenium(II) complex featuring photoinduced energy transfer across high-energy subunits. Chemphyschem 6:129–138 (10.1002/cphc.200400240) / Chemphyschem by F Puntoriero (2005)
  113. Larsen J, Puntoriero F, Pascher T, McClenaghan N, Campagna S, Åkesson E, Sundström V (2007) Extending the light-harvesting properties of transition-metal dendrimers. Chemphyschem 8:2643–2951 (10.1002/cphc.200700539) / Chemphyschem by J Larsen (2007)
  114. Puntoriero F, La Ganga G, Sartorel A, Carraro M, Scorrano G, Bonchio M, Campagna S (2010) Photo-induced water oxidation with tetra-nuclear ruthenium sensitizer and catalyst: a unique 4 × 4 ruthenium interplay triggering high efficiency with low-energy visible light. Chem Commun 46:4725–4727 (10.1039/c0cc00444h) / Chem Commun by F Puntoriero (2010)
  115. Guldi DM (2007) Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications. Phys Chem Chem Phys 9:1400–1420 (10.1039/b617684b) / Phys Chem Chem Phys by DM Guldi (2007)
  116. Guldi DM, Rahman GMA, Sgobba V, Ehli C (2006) Multifunctional molecular carbon materials – from fullerenes to carbon nanotubes. Chem Soc Rev 35:471–487 (10.1039/b511541h) / Chem Soc Rev by DM Guldi (2006)
  117. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136 (10.1021/cr050569o) / Chem Rev by D Tasis (2006)
  118. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859 (10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N) / Angew Chem Int Ed by A Hirsch (2002)
  119. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–2230 (10.1039/b518111a) / Chem Soc Rev by P Singh (2009)
  120. Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand J, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 24:3050–3051 (10.1039/b209843a) / Chem Commun by V Georgakilas (2002)
  121. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761 (10.1021/ja016954m) / J Am Chem Soc by V Georgakilas (2002)
  122. Murakami H, Nomura T, Nakashima N (2003) Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem Phys Lett 378:481–485 (10.1016/S0009-2614(03)01329-0) / Chem Phys Lett by H Murakami (2003)
  123. Guldi DM, Marcaccio M, Paolucci D, Paolucci F, Tagmatarchis N, Tasis D, Vázquez E, Prato M (2003) Single-wall carbon nanotube–ferrocene nanohybrids: observing intramolecular electron transfer in functionalized SWNTs. Angew Chem Int Ed 42:4206–4209 (10.1002/anie.200351289) / Angew Chem Int Ed by DM Guldi (2003)
  124. Guldi DM, Rahman GMA, Ramey J, Marcaccio M, Paolucci D, Paolucci F, Qin S, Ford WT, Balbinot D, Jux N, Tagmatarchis N, Prato M (2004) Donor–acceptor nanoensembles of soluble carbon nanotubes. Chem Commun 18:2034–2035 (10.1039/b406933a) / Chem Commun by DM Guldi (2004)
  125. Guldi DM, Rahman GMA, Jux N, Tagmatarchis N, Prato M (2004) Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. Angew Chem Int Ed 43:5526–5530 (10.1002/anie.200461217) / Angew Chem Int Ed by DM Guldi (2004)
  126. Guldi DM, Rahman GMA, Prato M, Jux N, Qin S, Ford W (2005) Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew Chem Int Ed 44:2015–2018 (10.1002/anie.200462416) / Angew Chem Int Ed by DM Guldi (2005)
  127. Guldi DM, Taieb H, Rahman GMA, Tagmatarchis N, Prato M (2005) Novel photoactive single-walled carbon nanotube-porphyrin polymer wraps: efficient and long-lived intracomplex charge separation. Adv Mater 17:871–875 (10.1002/adma.200400641) / Adv Mater by DM Guldi (2005)
  128. Guldi DM, Rahman GMA, Jux N, Balbinot D, Hartnagel U, Tagmatarchis N, Prato M (2005) Functional single-wall carbon nanotube nanohybrids associating SWNTs with water-soluble enzyme model systems. J Am Chem Soc 127:9830–9838 (10.1021/ja050930o) / J Am Chem Soc by DM Guldi (2005)
  129. Guldi DM, Rahman GMA, Jux N, Balbinot D, Tagmatarchis N, Prato M (2005) Multiwalled carbon nanotubes in donor-acceptor nanohybrids towards long-lived electron transfer products. Chem Commun 15:2038–2040 (10.1039/b418406h) / Chem Commun by DM Guldi (2005)
  130. Guldi DM, Rahman GMA, Zerbetto F, Prato M (2005) Carbon nanotubes in electron donor−acceptor nanocomposites. Acc Chem Res 38:871–878 (10.1021/ar040238i) / Acc Chem Res by DM Guldi (2005)
  131. Campidelli S, Sooambar C, Diz E, Ehli C, Guldi D, Prato M (2006) Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J Am Chem Soc 128:12544–12552 (10.1021/ja063697i) / J Am Chem Soc by S Campidelli (2006)
  132. Herranz MÁ, Martín N, Campidelli S, Prato M, Brehm G, Guldi DM (2006) Control over electron transfer in tetrathiafulvalene-modified single-walled carbon nanotubes. Angew Chem Int Ed 45:4478–4482 (10.1002/anie.200504354) / Angew Chem Int Ed by MÁ Herranz (2006)
  133. Ballesteros B, de la Torre G, Ehli C, Rahman GMA, Agulló-Rueda F, Guldi DM, Torres T (2007) Single-wall carbon nanotubes bearing covalently linked phthalocyanines−photoinduced electron transfer. J Am Chem Soc 129:5061–5068 (10.1021/ja068240n) / J Am Chem Soc by B Ballesteros (2007)
  134. Zhang X, Cui X, Liu Q, Zhang F (2009) Photoinduced multi-electron transfer in the Dn–A system consisting of multi-phthalocyanines linked to one carbon nanotube. Phys Chem Chem Phys 11:3566–3572 (10.1039/b819521h) / Phys Chem Chem Phys by X Zhang (2009)
  135. D’Souza F, Chitta R, Sandanayaka ASD, Subbaiyan NK, D'Souza L, Araki Y, Ito O (2007) Self-assembled single-walled carbon nanotube:zinc–porphyrin hybrids through ammonium ion–crown ether interaction: construction and electron transfer. Chem Eur J 13:8277–8284 (10.1002/chem.200700583) / Chem Eur J by F D’Souza (2007)
  136. Chitta R, Sandanayaka ASD, Schumacher AL, D'Souza L, Araki Y, Ito O, D'Souza F (2007) Donor−acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J Phys Chem C 111:6947–6955 (10.1021/jp0704416) / J Phys Chem C by R Chitta (2007)
  137. Sandanayaka ASD, Chitta R, Subbaiyan NK, D’Souza L, Ito O, D’Souza F (2009) Photoinduced charge separation in ion-paired porphyrin−single-wall carbon nanotube donor−acceptor hybrids. J Phys Chem C 113:13425–13432 (10.1021/jp901659p) / J Phys Chem C by ASD Sandanayaka (2009)
  138. Maligaspe E, Sandanayaka ASD, Hasobe T, Ito O, D’Souza F (2010) Sensitive efficiency of photoinduced electron transfer to band gaps of semiconductive single-walled carbon nanotubes with supramolecularly attached zinc porphyrin bearing pyrene glues. J Am Chem Soc 132:8158–8164 (10.1021/ja101776p) / J Am Chem Soc by E Maligaspe (2010)
  139. Bartelmess J, Ballesteros B, de la Torre G, Kiessling D, Campidelli S, Prato M, Torres T, Guldi DM (2010) Phthalocyanine−pyrene conjugates: a powerful approach toward carbon nanotube solar cells. J Am Chem Soc 132:16202–16211 (10.1021/ja107131r) / J Am Chem Soc by J Bartelmess (2010)
  140. He L, Zhu Y, Zheng J, Ma Y, Chen Y (2010) Meso-meso linked diporphyrin functionalized single-walled carbon nanotubes. J Photochem Photobiol A Chem 216:15–23 (10.1016/j.jphotochem.2010.09.001) / J Photochem Photobiol A Chem by L He (2010)
  141. Le Ho KH, Rivier L, Jousselme B, Jégou P, Filoramo A, Campidelli S (2010) Zn-porphyrin/Zn-phthalocyanine dendron for SWNT functionalisation. Chem Commun 46:8731–8733 (10.1039/c0cc02704a) / Chem Commun by KH Le Ho (2010)
  142. Barazzouk S, Hotchandani S, Vinodgopal K, Kamat PV (2004) Single-wall carbon nanotube films for photocurrent generation. A prompt response to visible-light irradiation. J Phys Chem B 108:17015–17018 (10.1021/jp0458405) / J Phys Chem B by S Barazzouk (2004)
  143. Hasobe T, Fukuzumi S, Kamat PV (2005) Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J- and H-aggregates to nanorods. J Am Chem Soc 127:11884–11885 (10.1021/ja050687t) / J Am Chem Soc by T Hasobe (2005)
  144. Hasobe T, Fukuzumi S, Kamat PV (2006) Organized assemblies of single wall carbon nanotubes and porphyrin for photochemical solar cells: charge injection from excited porphyrin into single-walled carbon nanoubes. J Phys Chem B 110:25477–25484 (10.1021/jp064845u) / J Phys Chem B by T Hasobe (2006)
  145. Vietmeyer F, Seger B, Kamat PV (2007) Anchoring ZnO particles on functionalized single wall carbon nanotubes. Excited state interactions and charge collection. Adv Mater 19:2935–2940 (10.1002/adma.200602773) / Adv Mater by F Vietmeyer (2007)
  146. Kongkanand A, Martínez Domínguez R, Kamat PV (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett 7:676–680 (10.1021/nl0627238) / Nano Lett by A Kongkanand (2007)
  147. Brown P, Takechi K, Kamat PV (2008) Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J Phys Chem C 112:4776–4782 (10.1021/jp7107472) / J Phys Chem C by P Brown (2008)
  148. Le Goff A, Artero V, Jousselme B, Dinh Tran P, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326:1384–1387 (10.1126/science.1179773) / Science by A Goff Le (2009)
  149. Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, Maccato C, Rapino S, Rodriguez Gonzalez B, Amenitsch H, Da Ros T, Casalis L, Goldoni A, Marcaccio M, Scorrano G, Scoles G, Paolucci F, Prato M, Bonchio M (2010) Efficient water oxidation at carbon nanotube/polyoxometalate electrocatalytic interfaces. Nat Chem 2:826–831 (10.1038/nchem.761) / Nat Chem by FM Toma (2010)
Dates
Type When
Created 14 years, 3 months ago (May 5, 2011, 6:36 a.m.)
Deposited 4 years, 9 months ago (Nov. 17, 2020, 3:02 p.m.)
Indexed 11 months, 3 weeks ago (Sept. 6, 2024, 1:30 a.m.)
Issued 14 years, 8 months ago (Jan. 1, 2011)
Published 14 years, 8 months ago (Jan. 1, 2011)
Published Online 14 years, 3 months ago (May 6, 2011)
Published Print 14 years, 8 months ago (Jan. 1, 2011)
Funders 0

None

@inbook{Carraro_2011, title={Artificial Photosynthesis Challenges: Water Oxidation at Nanostructured Interfaces}, ISBN={9783642222948}, ISSN={1436-5049}, url={http://dx.doi.org/10.1007/128_2011_136}, DOI={10.1007/128_2011_136}, booktitle={Photocatalysis}, publisher={Springer Berlin Heidelberg}, author={Carraro, Mauro and Sartorel, Andrea and Toma, Francesca Maria and Puntoriero, Fausto and Scandola, Franco and Campagna, Sebastiano and Prato, Maurizio and Bonchio, Marcella}, year={2011}, pages={121–150} }