Crossref journal-article
Elsevier BV
Journal of Structural Biology (78)
Bibliography

Mowbray, S. L., & Sandgren, M. O. J. (1998). Chemotaxis Receptors: A Progress Report on Structure and Function. Journal of Structural Biology, 124(2–3), 257–275.

Authors 2
  1. Sherry L. Mowbray (first)
  2. Mats O.J. Sandgren (additional)
References 163 Referenced 57
  1. 10.1128/JB.123.3.1000-1005.1975 / J. Bacteriol. / Soluble and membrane-bound aspartate-binding activities inSalmonella typhimurium by Aksamit (1975)
  2. 10.1128/jb.173.18.5837-5842.1991 / J. Bacteriol. / Structural features of methyl-accepting taxis proteins conserved between archaebacteria and eubacteria revealed by antigenic cross-reaction by Alam (1991)
  3. 10.1101/gad.6.5.825 / Gene Dev. / Polar localization of a bacterial chemoreceptor by Alley (1992)
  4. 10.1126/science.8456303 / Science / Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis by Alley (1993)
  5. 10.1101/SQB.1988.053.01.010 / Cold Spring Harbor Symp. Quant. Biol. / Structure–function studies of bacterial chemosensors by Ames (1988)
  6. 10.1016/0092-8674(88)90137-7 / Cell / Transmembrane signaling by bacterial chemoreceptors:E. coli by Ames (1988)
  7. 10.1128/jb.176.20.6340-6348.1994 / J. Bacteriol. / Constituitively signaling fragments of Tsr, theE. coli by Ames (1994)
  8. 10.1046/j.1365-2958.1996.408930.x / Mol. Microbiol. / Methylation segments are not required for chemotactic signalling by cytoplasmic fragments of Tsr, the methyl-accepting serine chemoreceptor ofEscherichia coli by Ames (1996)
  9. 10.1038/43199 / Nature / Robustness in simple biochemical networks by Barkai (1997)
  10. 10.1006/jsbi.1994.1013 / J. Struct. Biol. / Studies of the structural organization of a bacterial chemoreceptor by electron microscopy by Barnakov (1994)
  11. 10.1128/jb.178.15.4651-4660.1996 / J. Bacteriol. / Mutational analysis of a transmembrane segment in a bacterial chemoreceptor by Baumgartner (1996)
  12. 10.1128/jb.179.12.4075-4079.1997 / J. Bacteriol. / A signal transducer for aerotaxis inEscherichia coli by Bibikov (1997)
  13. 10.1021/bi00169a002 / Biochemistry / Aspartate receptors ofEscherichia coliSalmonella typhimurium by Biemann (1994)
  14. 10.1074/jbc.271.44.27927 / J. Biol. Chem. / An aspartate/insulin receptor chimera mitogenically activates fibroblasts by Biemann (1996)
  15. 10.1002/pro.5560011212 / Protein Sci. / Functional mapping of the surface ofEscherichia coli by Binnie (1992)
  16. 10.1006/jmbi.1998.1785 / J. Mol. Biol. / Multiple open forms of ribose-binding protein trace the path of its conformational change by Björkman (1998)
  17. 10.1146/annurev.mi.49.100195.002421 / Annu. Rev. Microbiol. / How bacteria sense and swim by Blair (1995)
  18. 10.1073/pnas.82.15.4891 / Proc. Natl. Acad. Sci. USA / Solubilization of a vectorial transmembrane receptor in functional form: The aspartate receptor of chemotaxis by Bogonez (1985)
  19. {'key': '10.1006/jsbi.1998.4043_SB984043RF19', 'series-title': 'Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology', 'article-title': 'Periplasmic binding-protein-dependent ABC transporters', 'author': 'Boos', 'year': '1996'} / Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology / Periplasmic binding-protein-dependent ABC transporters by Boos (1996)
  20. 10.1007/BF00425258 / Arch. Microbiol. / Ultrastructural localization of the maltose-binding protein within the cell envelope of Escherichia coli by Boos (1981)
  21. 10.1073/pnas.89.15.6756 / Proc. Natl. Acad. Sci. USA / Attenuation of sensory receptor signaling by covalent modification by Borkovich (1992)
  22. 10.1073/pnas.86.4.1208 / Proc. Natl. Acad. Sci. USA / Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer by Borkovich (1989)
  23. 10.1016/0092-8674(90)90429-I / Cell / The dynamics of protein phosphorylation in bacterial chemotaxis by Borkovich (1990)
  24. {'key': '10.1006/jsbi.1998.4043_SB984043RF24', 'first-page': '145', 'article-title': 'The three-dimensional structure of the aspartate receptor fromEscherichia coli', 'volume': 'D51', 'author': 'Bowie', 'year': '1995', 'journal-title': 'Acta Crystallogr.'} / Acta Crystallogr. / The three-dimensional structure of the aspartate receptor fromEscherichia coli by Bowie (1995)
  25. 10.1091/mbc.6.10.1367 / Mol. Biol. Cell / Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis by Bray (1995)
  26. 10.1038/30018 / Nature / Receptor clustering as a cellular mechanism to control sensitivity by Bray (1998)
  27. 10.1128/jb.179.9.2963-2968.1997 / J. Bacteriol. / Primary structure and functional analysis of the soluble transducer protein HtrXI in the archaeonHalobacterium salinarium by Brooun (1997)
  28. 10.1021/bi961107v / Biochemistry / Effects of protein stabilizing agents on thermal backbone motions: A disulfide trapping study by Butler (1996)
  29. Butler, S. L. Falke, J. J. 1998, Cysteine and disulfide scanning reveals two amphiphilic helices in the linker region of the asparate chemoreceptor (10.1021/bi980607g)
  30. 10.1016/S0006-3495(92)81806-4 / Biophys. J. / Structure and dynamics ofEscherichia coli by Careaga (1992)
  31. 10.1021/bi00561a015 / Biochemistry / Chemotaxis inEscherichia coli: by Chelsky (1980)
  32. 10.1074/jbc.270.41.24038 / J. Biol. Chem. / The N-terminal cytoplasmic tail of the aspartate receptor is not essential in signal transduction of bacterial chemotaxis by Chen (1995)
  33. 10.1074/jbc.270.41.24043 / J. Biol. Chem. / Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor by Chervitz (1995)
  34. 10.1073/pnas.93.6.2545 / Proc. Natl. Acad. Sci. USA / Molecular mechanism of transmembrane signaling by the aspartate receptor: A model by Chervitz (1996)
  35. 10.1021/bi00030a010 / Biochemistry / Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface by Chervitz (1995)
  36. 10.1016/0968-0004(85)90270-1 / Trends Biochem. Sci. / Helix movements in proteins by Chothia (1985)
  37. 10.1016/S0021-9258(19)83572-X / J. Biol. Chem. / Membrane receptors for aspartate and serine in bacterial chemotaxis by Clarke (1979)
  38. 10.1126/science.271.5252.1113 / Science / Imitation ofEscherichia coli by Cochran (1996)
  39. 10.1128/jb.171.5.2361-2371.1989 / J. Bacteriol. / Evolution of chemotactic-signal tranducers in enteric bacteria by Dahl (1989)
  40. 10.1128/JB.164.3.1057-1063.1985 / J. Bacteriol. / Interspecific reconstitution of maltose transport and chemotaxis inEscherichia coli by Dahl (1985)
  41. 10.1074/jbc.272.52.32878 / J. Biol. Chem. / Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor by Danielson (1997)
  42. 10.1021/bi00186a009 / Biochemistry / Attractant- and disulfide-induced conformational changes in the ligand-binding domain of the chemotaxis aspartate receptor: A19 by Danielson (1994)
  43. 10.1111/j.1432-1033.1995.tb20211.x / Eur. J. Biochem. / Purification and characterization of the periplasmic nickel-binding protein NikA ofEscherichia coli by De Pina (1995)
  44. 10.1007/BF00415731 / Arch. Microbiol. / Pole cap formation inEscherichia coli by Dietzel (1978)
  45. 10.1073/pnas.95.4.1381 / Proc. Natl. Acad. Sci. USA / Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain by Djordjevic (1998)
  46. 10.1016/S0969-2126(97)00210-4 / Structure / Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine by Djordjevic (1997)
  47. 10.1038/nsb0698-446 / Nature Struct. Biol. / Chemotaxis receptor recognition by protein methyltransferase CheR by Djordjevic (1998)
  48. 10.1016/S0021-9258(18)52321-8 / J. Biol. Chem. / Tuning the responsiveness of a sensory receptor via covalent modification by Dunten (1991)
  49. 10.1002/pro.5560041110 / Protein Sci. / Crystal structure of the dipeptide binding protein fromEscherichia coli by Dunten (1995)
  50. 10.1073/pnas.83.21.8137 / Proc. Natl. Acad. Sci. USA / Linking functional domains of the human insulin receptor with the bacterial aspartate receptor by Ellis (1986)
  51. 10.1146/annurev.cellbio.13.1.457 / Annu. Rev. Cell Dev. Biol. / The two-component signaling pathway of bacterial chemotaxis: A molecular view of signal transduction by receptors, kinases, and adaptation enzymes by Falke (1997)
  52. 10.1126/science.2820061 / Science / Global flexibility in a sensory receptor: A site-directed cross-linking appproach by Falke (1987)
  53. 10.1016/S0021-9258(17)37057-6 / J. Biol. Chem. / The 1.9 Å x-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor fromSalmonella typhimurium by Flocco (1994)
  54. Flocco, M. M. Mowbray, S. L. 1998, Conformational changes of periplasmic binding proteins follow a common plan
  55. 10.1016/S0021-9258(17)39087-7 / J. Biol. Chem. / Purification and characterization of the aspartate chemoreceptor by Foster (1985)
  56. 10.1046/j.1365-2958.1997.3001661.x / Mol. Microbiol. / Maltose-binding protein interacts simultaneously and asymmetrically with both subunits of the Tar chemoreceptor by Gardina (1997)
  57. 10.1126/science.274.5286.425 / Science / Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain by Gardina (1996)
  58. 10.1016/0092-8674(92)90247-A / Cell / Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway by Gegner (1992)
  59. 10.1023/A:1027391402753 / Biosci. Rep. / Mechanisms of oxygen taxis in bacteria by Grishanin (1997)
  60. 10.1016/S0006-3495(95)80232-8 / Biophys. J. / A model of excitation and adaptation in bacterial chemotaxis by Hauri (1995)
  61. 10.1016/0092-8674(95)90404-2 / Cell / Dimerization of cell surface receptors in signal transduction by Heldin (1995)
  62. 10.1146/annurev.cb.08.110192.000435 / Annu. Rev. Cell Biol. / ABC transporters: From microorganisms to man by Higgins (1992)
  63. 10.1073/pnas.93.21.11546 / Proc. Natl. Acad. Sci. USA / Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linkingin vivo by Hughson (1996)
  64. 10.1002/pro.5560060206 / Protein Sci. / Analysis of protein structure in intact cells: Cross-linking in vivo between introduced cyteines in the transmembrane domain of a bacterial chemoreceptor by Hughson (1997)
  65. 10.1074/jbc.272.21.13810 / J. Biol. Chem. / Uncoupling of ligand-binding affinity of the bacterial serine chemoreceptor from methylation- and temperature-modulated signaling states by Iwama (1997)
  66. 10.1002/pro.5560020407 / Protein Sci. / Three-dimensional structural model of the serine receptor ligand-binding domain by Jeffery (1993)
  67. 10.1128/jb.170.11.5134-5140.1988 / J. Bacteriol. / Purification and characterization of the wild-type and mutant carboxy-terminal domains of theEscherichia coli by Kaplan (1988)
  68. 10.1016/S0021-9258(18)34030-4 / J. Biol. Chem. / The methly-accepting chemotaxis proteins ofE. coli: by Kehry (1982)
  69. 10.1021/bi961481v / Biochemistry / Producing positive, negative, and no cooperativity by mutations at a single residue located at the subunit interface in the aspartate receptor ofSalmonella typhimurium by Kolodziej (1996)
  70. 10.1128/jb.170.10.4516-4521.1988 / J. Bacteriol. / Maltose chemoreceptor of Escherichia coli: Interaction of maltose-binding protein and the tar signal transducer by Kossman (1988)
  71. 10.1016/0014-5793(94)01068-4 / FEBS Lett. / A cytoplasmic domain is required for the functional interaction of SRI and HtrI in archael signal transduction by Krah (1994)
  72. 10.1016/S0021-9258(18)43969-5 / J. Biol. Chem. / Deducing the organization of a transmembrane domain by disulfide cross-linking: The bacterial chemoreceptor Trg by Lee (1994)
  73. 10.1073/pnas.92.12.5416 / Proc. Natl. Acad. Sci. USA / Identification of functionally important helical faces in transmembrane segments by scanning mutagenesis by Lee (1995)
  74. 10.1002/pro.5560040608 / Protein Sci. / Quantitative approaches to utilizing mutational analysis and disulfide crosslinking for modeling a transmembrane domain by Lee (1995)
  75. 10.1073/pnas.92.8.3391 / Proc. Natl. Acad. Sci. USA / Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linkingin vivo by Lee (1995)
  76. 10.1006/jmbi.1996.0483 / J. Mol. Biol. / Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis by Le Moual (1996)
  77. 10.1021/bi9713207 / Biochemistry / Methylation of theEscherichia coli by Le Moual (1997)
  78. 10.1016/S0006-3495(98)77777-X / Biophys. J. / Origins of individual swimming behavior in bacteria by Levin (1998)
  79. 10.1074/jbc.271.50.32057 / J. Biol. Chem. / Active site interference and asymmetric activation in the chemotaxis protein histidine kinase CheA by Levit (1996)
  80. 10.1021/bi971510h / Biochemistry / The serine chemoreceptor fromEscherichia coli by Li (1997)
  81. 10.1021/bi00187a025 / Biochemistry / The serine receptor of bacterial chemotaxis exhibits half-site saturation for serine binding by Lin (1994)
  82. 10.1093/emboj/16.24.7231 / EMBO J. / Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis by Liu (1997)
  83. 10.1016/S0006-3495(92)81782-4 / Biophys. J. / Escherichia coli by Long (1992)
  84. 10.1021/bi00156a007 / Biochemistry / Oligomerization of the cytoplasmic fragment from the aspartate receptor ofEsherichia coli by Long (1992)
  85. 10.1016/S0968-0004(96)10052-9 / Trends Biochem. Sci. / Coiled coils: New structures and new functions by Lupas (1996)
  86. 10.1016/S0021-9258(18)71497-X / J. Biol. Chem. / Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis by Lupas (1989)
  87. 10.1126/science.252.5009.1162 / Science / Predicting coiled coils from protein sequences by Lupas (1991)
  88. 10.1073/pnas.92.25.11583 / Proc. Natl. Acad. Sci. USA / Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways ofEscherichia coli by Lux (1995)
  89. 10.1073/pnas.88.23.10402 / Proc. Natl. Acad. Sci. USA / Disulfide cross-linking studies of the transmembrane regions of the aspartate sensory receptor ofEscherichia coli by Lynch (1991)
  90. 10.1128/jb.175.22.7125-7129.1993 / J. Bacteriol. / Polarized cells, polar actions by Maddock (1993)
  91. 10.1126/science.8456299 / Science / Polar location of the chemoreceptor complex in theEscherichia coli by Maddock (1993)
  92. 10.1016/S0021-9258(17)39299-2 / J. Biol. Chem. / Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein by Manson (1985)
  93. 10.1128/jb.165.1.34-40.1986 / J. Bacteriol. / Mutations in tar suppress defects in maltose chemotaxis caused by specific malE mutations by Manson (1986)
  94. 10.1126/science.1660187 / Science / Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand by Milburn (1991)
  95. 10.1016/S0021-9258(18)68781-2 / J. Biol. Chem. / Site-directed cross-linking: Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis by Milligan (1988)
  96. 10.1016/S0021-9258(19)39586-9 / J. Biol. Chem. / The amino terminus of the aspartate chemoreceptor is formylmethionine by Milligan (1990)
  97. 10.1126/science.1661030 / Science / Intrasubunit signal transduction by the aspartate chemoreceptor by Milligan (1991)
  98. 10.1016/S0021-9258(20)80684-X / J. Biol. Chem. / Purification and characterization of the periplasmic domain of the aspartate chemoreceptor by Milligan (1993)
  99. 10.1128/JB.159.1.360-367.1984 / J. Bacteriol. / Conditional inversion of the thermoresponse inEscherichia coli by Mizuno (1984)
  100. 10.1128/jb.165.3.890-895.1986 / J. Bacteriol. / Acquisition of maltose chemotaxis inSalmonella typhimuriumEscherichia coli by Mizuno (1986)
  101. 10.1073/pnas.86.15.5683 / Proc. Natl. Acad. Sci. USA / Transmembrane signaling by a chimera of theEscherichia coli by Moe (1989)
  102. {'key': '10.1006/jsbi.1998.4043_SB984043RF102', 'series-title': 'Microbiology Energy Transduction: Genetics, Structure and Function of Membrane Proteins', 'first-page': '163', 'article-title': 'Transmembrane signaling through the aspartate receptor', 'author': 'Moe', 'year': '1986'} / Microbiology Energy Transduction: Genetics, Structure and Function of Membrane Proteins / Transmembrane signaling through the aspartate receptor by Moe (1986)
  103. 10.1128/jb.175.1.133-140.1993 / J. Bacteriol. / Proteins antigenically related to methyl-accepting chemotaxis protein ofEscherichia coli by Morgan (1993)
  104. 10.1016/0022-2836(92)91033-L / J. Mol. Biol. / 1.7 Å X-ray structure of the periplasmic ribose receptor fromEscherichia coli by Mowbray (1992)
  105. 10.1016/S0021-9258(17)39088-9 / J. Biol. Chem. / Proteolytic fragments identified with domains of the aspartate chemoreceptor by Mowbray (1985)
  106. 10.1016/0092-8674(87)90213-3 / Cell / Additive and independent responses in a single receptor: Aspartate and maltose stimuli on the Tar protein by Mowbray (1987)
  107. 10.1128/jb.167.3.992-998.1986 / J. Bacteriol. / Characterization ofEscherichia coli by Mutoh (1986)
  108. 10.1016/0022-2836(86)90138-5 / J. Mol. Biol. / Differential localization of membrane receptor chemotaxis proteins in theCaulobacter by Nathan (1986)
  109. 10.1021/bi00051a006 / Biochemistry / 2 Å resolution structure of DppA, a periplasmic dipeptide transport/chemosensory receptor by Nickitenko (1995)
  110. 10.1073/pnas.85.15.5492 / Proc. Natl. Acad. Sci. USA / Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: Evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism by Ninfa (1988)
  111. 10.1016/S0021-9258(18)92886-3 / J. Biol. Chem. / Reconstitution of the bacterial chemotaxis signal transduction system from purified components by Ninfa (1991)
  112. 10.1016/S0021-9258(18)45534-2 / J. Biol. Chem. / Sites of covalent modification in Trg, a sensory transducer ofEscherichia coli by Nowlin (1987)
  113. 10.1128/jb.170.6.2521-2526.1988 / J. Bacteriol. / Cloning of the C-terminal cytoplasmic fragment of the tar protein and effects of the fragment on chemotaxis ofEscherichia coli by Oosawa (1988)
  114. 10.1073/pnas.94.21.11201 / Proc. Natl. Acad. Sci. USA / Converting a transmembrane receptor to a soluble receptor: recognition domain to effector domain signaling after excision of the transmembrane domain by Ottemann (1997)
  115. 10.1021/bi980305e / Biochemistry / Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR by Ottemann (1998)
  116. 10.1073/pnas.89.9.4144 / Proc. Natl. Acad. Sci. USA / Determination of transmembrane protein structure by disulfide cross-linking: TheEscherichia coli by Pakula (1992)
  117. 10.1111/j.1365-2958.1996.tb02484.x / Mol. Microbiol. / Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: Variation of common themes by Quiocho (1996)
  118. 10.1099/00221287-111-2-363 / J. Gen. Microbiol. / Pleiotropic aspartate taxis and serine taxis mutants ofEscherichia coli by Reader (1979)
  119. 10.1073/pnas.94.20.10541 / Proc. Natl. Acad. Sci. USA / The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals forEscherichia coli by Rebbapragada (1997)
  120. 10.1016/S0021-9258(18)92884-X / J. Biol. Chem. / Sites of deamidation and methylation in Tsr, a bacterial chemotaxis sensory transducer by Rice (1991)
  121. 10.1016/0092-8674(81)90051-9 / Cell / The methyl-accepting chemotaxis proteins ofE. coli by Rollins (1981)
  122. 10.1126/science.2377893 / Science / Three-dimensional structure of cellobiohydrolase II fromTrichoderma reesei by Rouvinen (1990)
  123. 10.1016/0022-2836(89)90531-7 / J. Mol. Biol. / Periplasmic binding protein structure and function: refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine by Sack (1989)
  124. 10.1038/365343a0 / Nature / Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance by Schuster (1993)
  125. 10.1016/S0969-2126(94)00088-3 / Structure / Transmembrane signalling and the aspartate receptor by Scott (1994)
  126. 10.1021/bi9524979 / Biochemistry / The cytoplasmic fragment of the aspartate receptor displays globally dynamic behavior by Seeley (1996)
  127. 10.1073/pnas.83.23.8987 / Proc. Natl. Acad. Sci. USA / Temporal comparisons in bacterial chemotaxis by Segall (1986)
  128. 10.1016/S0021-9258(19)78090-9 / J. Biol. Chem. / Mutagenic studies of the interaction between the aspartate receptor and methyltransferase fromEscherichia coli by Shapiro (1994)
  129. 10.1021/bi00159a003 / Biochemistry / Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis by Sharff (1992)
  130. 10.1073/pnas.78.10.6051 / Proc. Natl. Acad. Sci. USA / Posttranslational processing of methyl-accepting chemotaxis proteins inEscherichia coli by Sherris (1981)
  131. 10.1006/jmbi.1996.0645 / J. Mol. Biol. / Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: The maltose-, glucose/galactose- and ribose-binding proteins by Shilton (1996)
  132. 10.1016/S0021-9258(17)39227-X / J. Biol. Chem. / Multiple forms of the CheB methylesterase in bacterial chemosensing by Simms (1985)
  133. 10.1073/pnas.94.14.7263 / Proc. Natl. Acad. Sci. USA / A model of excitation and adaptation in bacterial chemotaxis by Spiro (1997)
  134. 10.1038/280279a0 / Nature / Protein methylation in behavioural control mechanisms and in signal transduction by Springer (1979)
  135. 10.1073/pnas.74.2.533 / Proc. Natl. Acad. Sci. USA / Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system by Springer (1977)
  136. 10.1016/0092-8674(94)90064-7 / Cell / Protein–protein interaction converts a proton pump into a sensory receptor by Spudich (1994)
  137. 10.1016/S0021-9258(19)67774-4 / J. Biol. Chem. / The 2.3 Å resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis by Spurlino (1991)
  138. 10.1016/0959-440X(95)80006-9 / Curr. Opin. Struct. Biol. / Bacterial chemotaxis: a field in motion by Stock (1995)
  139. 10.1146/annurev.bb.20.060191.000545 / Annu. Rev. Biophys. Biophys. Chem. / Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks by Stock (1991)
  140. {'key': '10.1006/jsbi.1998.4043_SB984043RF140', 'series-title': 'Escherichia coliSalmonella typhimurium', 'first-page': '1103', 'article-title': 'Chemotaxis', 'author': 'Stock', 'year': '1996'} / Escherichia coliSalmonella typhimurium / Chemotaxis by Stock (1996)
  141. {'key': '10.1006/jsbi.1998.4043_SB984043RF141', 'series-title': 'Two-Component Signal Transduction', 'first-page': '25', 'article-title': 'Two-component signal transduction systems: structure function relationships and mechanisms of catalysis', 'author': 'Stock', 'year': '1995'} / Two-Component Signal Transduction / Two-component signal transduction systems: structure function relationships and mechanisms of catalysis by Stock (1995)
  142. 10.1021/bi00163a004 / Biochemistry / Structure and dynamics of transmembrane signaling by theEscherichia coli by Stoddard (1992)
  143. 10.1038/358774a0 / Nature / Prediction of the structure of a receptor–protein complex using a binary docking method by Stoddard (1992)
  144. 10.1073/pnas.90.4.1146 / Proc. Natl. Acad. Sci. USA / Molecular recognition analyzed by docking simulations: The aspartate receptor and isocitrate dehydrogenase fromEscherichia coli by Stoddard (1993)
  145. 10.1074/jbc.271.30.17966 / J. Biol. Chem. / Role of α-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis by Surette (1996)
  146. 10.1074/jbc.271.2.939 / J. Biol. Chem. / Dimerization is required for the activity of the protein histidine kinase CheA that mediates signal transduction in bacterial chemotaxis by Surette (1996)
  147. 10.1128/MR.57.2.320-346.1993 / Microbiol. Rev. / Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria by Tam (1993)
  148. 10.1126/science.274.5286.423 / Science / Signaling by theEscherichia coli by Tatsuno (1996)
  149. 10.1016/S0021-9258(17)44537-6 / J. Biol. Chem. / Sites of methyl esterification on the aspartate receptor involved in bacterial chemotaxis by Terwilliger (1983)
  150. 10.1016/S0021-9258(17)42852-3 / J. Biol. Chem. / Sites of methyl esterification and deamidation on the aspartate receptor involved in chemotaxis by Terwilliger (1984)
  151. 10.1021/bi962578k / Biochemistry / Solid-state REDOR NMR distance measurements at the ligand site of a bacterial chemotaxis membrane receptor by Wang (1997)
  152. Wolff, C. 1983, Genetic and biochemical studies of maltose chemotaxis inEscherichia coli, Department of Biology, University of Konstanz, Konstanz, West Germany
  153. 10.1021/bi9530189 / Biochemistry / The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation by Wu (1996)
  154. 10.1021/bi00009a037 / Biochemistry / Reversible dissociation and unfolding of theEscherichia coli by Wu (1995)
  155. 10.1016/S0968-0004(97)01036-0 / Trends Biochem. Sci. / Two-component signal transducers and MAPK cascades by Wurgler-Murphy (1997)
  156. 10.1073/pnas.89.17.7890 / Proc. Natl. Acad. Sci. USA / Ligand occupancy mimicked by single residue substitutions in a receptor: Transmembrane signalling induced by mutation by Yaghmai (1992)
  157. 10.1073/pnas.90.1.217 / Proc. Natl. Acad. Sci. USA / Cloning and characterization of theSalmonella typhimurium by Yamamoto (1993)
  158. 10.1016/S0021-9258(18)98416-4 / J. Biol. Chem. / The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor by Yeh (1993)
  159. 10.1006/jmbi.1996.0507 / J. Mol. Biol. / High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor by Yeh (1996)
  160. 10.1073/pnas.93.10.4649 / Proc. Natl. Acad. Sci. USA / Signal transduction in the archaeonHalobacterium salinarium by Zhang (1996)
  161. 10.1016/S0021-9258(18)50020-X / J. Biol. Chem. / Maltose chemotaxis involves residues on the same face of the N-terminal and C-terminal domains of maltose-binding protein by Zhang (1992)
  162. {'key': '10.1006/jsbi.1998.4043_SB984043RF162', 'article-title': 'Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism', 'author': 'Zhang', 'year': '1998', 'journal-title': 'Proc. Natl. Acad. Sci. USA'} / Proc. Natl. Acad. Sci. USA / Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism by Zhang (1998)
  163. 10.1023/A:1027340813657 / Biosci. Rep. / How do bacteria avoid high oxygen concentrations by Zhulin (1997)
Dates
Type When
Created 22 years, 10 months ago (Oct. 7, 2002, 6:53 a.m.)
Deposited 4 years, 3 months ago (May 3, 2021, 5:47 a.m.)
Indexed 1 month, 4 weeks ago (June 26, 2025, 9:28 a.m.)
Issued 26 years, 8 months ago (Dec. 1, 1998)
Published 26 years, 8 months ago (Dec. 1, 1998)
Published Print 26 years, 8 months ago (Dec. 1, 1998)
Funders 0

None

@article{Mowbray_1998, title={Chemotaxis Receptors: A Progress Report on Structure and Function}, volume={124}, ISSN={1047-8477}, url={http://dx.doi.org/10.1006/jsbi.1998.4043}, DOI={10.1006/jsbi.1998.4043}, number={2–3}, journal={Journal of Structural Biology}, publisher={Elsevier BV}, author={Mowbray, Sherry L. and Sandgren, Mats O.J.}, year={1998}, month=dec, pages={257–275} }