Crossref journal-article
Wiley
WIREs Computational Molecular Science (311)
Abstract

AbstractThis review covers a family of atomistic, mostly quantum chemistry (QC) based semiempirical methods for the fast and reasonably accurate description of large molecules in gas and condensed phase. The theory is derived from a density functional (DFT) perturbation expansion of the electron density in fluctuation terms to various orders similar to the original density functional tight binding model. The term “eXtended” in their name (xTB) emphasizes the parameter availability for almost the entire periodic table of elements (Z ≤ 86) and improvements of the underlying theory regarding, for example, the atomic orbital basis set, the level of multipole approximation and the treatment of the important electrostatic and dispersion interactions. A common feature of most members is their consistent parameterization on accurate gas phase theoretical reference data for geometries, vibrational frequencies and noncovalent interactions, which are the primary properties of interest in typical applications to systems composed of up to a few thousand atoms. Further specialized versions were developed for the description of electronic spectra and corresponding response properties. Besides a provided common theoretical background with some important implementation details in the efficient and free xtb program, various benchmarks for structural and thermochemical properties including (transition‐)metal systems are discussed. The review is completed by recent extensions of the model to the force‐field (FF) level as well as its application to solids under periodic boundary conditions. The general applicability together with the excellent cost‐accuracy ratio and the high robustness make the xTB family of methods very attractive for various fields of computer‐aided chemical research.This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Electronic Structure Theory > Semiempirical Electronic Structure Methods Software > Quantum Chemistry

Bibliography

Bannwarth, C., Caldeweyher, E., Ehlert, S., Hansen, A., Pracht, P., Seibert, J., Spicher, S., & Grimme, S. (2020). Extended tight‐binding quantum chemistry methods. WIREs Computational Molecular Science, 11(2). Portico.

Authors 8
  1. Christoph Bannwarth (first)
  2. Eike Caldeweyher (additional)
  3. Sebastian Ehlert (additional)
  4. Andreas Hansen (additional)
  5. Philipp Pracht (additional)
  6. Jakob Seibert (additional)
  7. Sebastian Spicher (additional)
  8. Stefan Grimme (additional)
References 182 Referenced 1,107
  1. 10.1063/1.4869598
  2. 10.1021/acs.accounts.6b00532
  3. 10.1002/anie.201709943
  4. 10.1021/acs.jctc.7b00300
  5. 10.1063/1.4986962
  6. 10.1021/acs.jctc.7b00365
  7. 10.1021/acs.jpca.6b04527
  8. 10.1002/jcc.23317
  9. 10.1063/1.4927476
  10. 10.1063/1.5012601
  11. 10.1002/cphc.201700082
  12. 10.1002/wcms.1161
  13. 10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U
  14. 10.1103/PhysRevB.51.12947
  15. 10.1103/PhysRevB.58.7260
  16. 10.1021/ct100684s
  17. 10.1021/acs.chemrev.5b00584
  18. {'volume-title': 'AMS 2019.3, SCM, Theoretical Chemistry', 'author': 'Rüger R', 'key': 'e_1_2_11_19_1'} / AMS 2019.3, SCM, Theoretical Chemistry by Rüger R
  19. T. D.Kühne M.Iannuzzi M. D.Ben V.V.Rybkin P.Seewald F.Stein T.Laino R. Z.Khaliullin O.Schütt F.Schiffmann D.Golze J.Wilhelm S.Chulkov M. H.Bani‐Hashemian V.Weber U.Borstnik M.Taillefumier A. S.Jakobovits A.Lazzaro H.Pabst T.Müller R.Schade M.Guidon S.Andermatt N.Holmberg G. K.Schenter A.Hehn A.Bussy F.Belleflamme G.Tabacchi A.Glöß M.Lass I.Bethune C. J.Mundy C.Plessl M.Watkins J.VandeVondele M.Krack andJ.Hutter.Cp2k: An electronic structure and molecular dynamics software package – Quickstep: Efficient and accurate electronic structure calculations;2020. (10.1063/5.0007045)
  20. 10.1002/jcc.24312
  21. 10.1063/1.5143190
  22. F.Manby T.Miller P.Bygrave F.Ding T.Dresselhaus F.Batista‐Romero A.Buccheri C.Bungey S.Lee R.Meli and et al.entos: A quantum molecular simulation package;2019. (10.26434/chemrxiv.7762646.v1)
  23. 10.1002/wcms.81
  24. 10.1002/wcms.1327
  25. 10.1063/5.0007615
  26. {'key': 'e_1_2_11_27_1', 'first-page': 'e1494', 'article-title': 'TeraChem: A GPU‐accelerated electronic structure package for large‐scale ab initio molecular dynamics', 'author': 'Seritan S', 'year': '2020', 'journal-title': 'WIREs Comput Mol Sci'} / WIREs Comput Mol Sci / TeraChem: A GPU‐accelerated electronic structure package for large‐scale ab initio molecular dynamics by Seritan S (2020)
  27. 10.1002/jcc.24922
  28. 10.1002/anie.201708266
  29. 10.1021/jacs.7b05833
  30. 10.1021/acs.jcim.8b00256
  31. 10.1002/minf.201800115
  32. 10.1063/1.5090222
  33. {'key': 'e_1_2_11_34_1', 'first-page': '1', 'article-title': 'A robust non‐self‐consistent tight‐binding quantum chemistry method for large molecules', 'author': 'Pracht P', 'year': '2019', 'journal-title': 'ChemRxiv'} / ChemRxiv / A robust non‐self‐consistent tight‐binding quantum chemistry method for large molecules by Pracht P (2019)
  34. 10.1021/j100161a070
  35. 10.1021/jz3008485
  36. 10.1088/0953-8984/26/31/315007
  37. 10.1103/PhysRevB.92.045131
  38. 10.1063/1.4811331
  39. 10.1063/1.4959605
  40. 10.1080/00268976.2018.1510141
  41. 10.1063/1.5037665
  42. 10.1063/1.5080199
  43. 10.1021/acs.jpca.9b03176
  44. 10.1021/acs.jpca.9b08474
  45. 10.1021/acs.jpcb.0c00643
  46. {'key': 'e_1_2_11_47_1', 'article-title': 'Robust atomistic modeling of materials, organometallic, and biochemical systems', 'author': 'Spicher S', 'year': '2020', 'journal-title': 'Angew Chem Int Ed'} / Angew Chem Int Ed / Robust atomistic modeling of materials, organometallic, and biochemical systems by Spicher S (2020)
  47. Semiempirical extended tight‐binding program packagextb.https://github.com/grimme-lab/xtb. Accessed April 8 2020.
  48. 10.1021/jp074167r
  49. 10.1021/acs.jctc.8b01176
  50. 10.1063/1.4945277
  51. 10.1103/PhysRevB.31.1770
  52. 10.1103/PhysRevB.39.12520
  53. 10.1021/acs.jctc.7b00118
  54. 10.1098/rspa.1924.0082
  55. 10.1098/rspa.1938.0173
  56. 10.1063/1.1672392
  57. 10.1103/RevModPhys.23.69
  58. {'issue': '1083', 'key': 'e_1_2_11_59_1', 'first-page': '541', 'article-title': 'The molecular orbital theory of chemical valency. VIII. A method of calculating ionization potentials', 'volume': '205', 'author': 'Hall GG', 'year': '1951', 'journal-title': 'Proc R Soc A Math Phys'} / Proc R Soc A Math Phys / The molecular orbital theory of chemical valency. VIII. A method of calculating ionization potentials by Hall GG (1951)
  59. 10.1002/1096-987X(20010115)22:1<89::AID-JCC9>3.0.CO;2-7
  60. 10.1103/PhysRev.137.A1441
  61. {'key': 'e_1_2_11_62_1', 'first-page': '9‐49', 'volume-title': 'CRC handbook of chemistry and physics', 'author': 'Mantina M', 'year': '2010'} / CRC handbook of chemistry and physics by Mantina M (2010)
  62. 10.1524/zpch.1957.12.5_6.335
  63. 10.1007/BF00528281
  64. {'key': 'e_1_2_11_65_1', 'first-page': '4450', 'article-title': 'A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules', 'volume': '86', 'author': 'Klopman G', 'year': '1964', 'journal-title': 'J Am Chem Soc'} / J Am Chem Soc / A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules by Klopman G (1964)
  65. 10.1063/1.3382344
  66. 10.1002/jcc.21759
  67. 10.1002/cphc.201100540
  68. 10.1016/S1380-7323(96)80042-2
  69. 10.1002/chem.200800987
  70. 10.1007/s00214-008-0481-0
  71. 10.1016/j.comptc.2014.02.023
  72. 10.1021/ct200866d
  73. 10.1063/1.478522
  74. 10.1063/1.467146
  75. 10.1039/b803727b
  76. 10.1016/j.sbi.2008.02.003
  77. 10.1038/nature20771
  78. 10.1039/b903811f
  79. 10.1093/protein/7.3.385
  80. 10.2174/0929867003375317
  81. 10.1021/jm010016f
  82. 10.1002/jcc.20035
  83. 10.1002/prot.21123
  84. 10.1021/ct900587b
  85. 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
  86. 10.1146/annurev-biophys-052118-115325
  87. 10.1002/prot.20033
  88. 10.1002/jcc.10321
  89. 10.1002/wcms.56
  90. 10.1039/C7SC00601B
  91. 10.1063/1.4804162
  92. 10.1021/ct400319w
  93. 10.1021/acs.jctc.9b01266
  94. 10.1039/C9CP06869D
  95. Conformer‐rotamer ensemble sampling tool based on the xtb semiempirical extended tight‐binding program packagecrest.https://github.com/grimme-lab/crest. Accessed: May 19 2020.
  96. 10.1002/chem.201200497
  97. 10.1088/1361-648X/aa680e
  98. BohleF BurschM CaldeweyherE DohmS EhlertS KoopmanJ NeugebauerH PrachtP SchmitzK SchmitzS SeibertJ SpicherS GrimmeS.User guide to semiempirical tight binding.https://xtb-docs.readthedocs.io/en/latest/contents.html. Accessed: April 8 2020.
  99. BrandlG.Sphinx python documentation generator.https://www.sphinx-doc.org/en/master/;2007.
  100. Asciidoctor Project. Asciidoctor: A fast text processor & publishing toolchain for converting AsciiDoc to HTML5 DocBook & more.https://asciidoctor.org/;2002.
  101. 10.1016/0009-2614(95)00646-L
  102. 10.1002/(SICI)1096-987X(199709)18:12<1473::AID-JCC5>3.0.CO;2-G
  103. 10.1093/imamat/6.1.76
  104. 10.1007/BF01589116
  105. 10.1007/BF01386390
  106. 10.1021/acs.inorgchem.7b01950
  107. 10.1002/anie.201904021
  108. 10.1039/c3cp52293h
  109. 10.1002/jcc.23649
  110. 10.1007/s00894-007-0233-4
  111. 10.1021/ct200751e
  112. 10.1063/1.464913
  113. 10.1039/b508541a
  114. 10.1039/B600027D
  115. 10.1063/1.3659142
  116. 10.1021/ct1002253
  117. 10.1021/ct2002946
  118. 10.1021/ct300647k
  119. 10.1021/ct6001187
  120. 10.1063/1.1626543
  121. 10.1007/s00894-012-1667-x
  122. 10.1021/cr200101d
  123. 10.1021/ct800047t
  124. 10.1021/acs.jctc.5b01048
  125. 10.1021/ja00051a040
  126. 10.1002/jcc.20292
  127. 10.1016/0040-4039(93)88034-G
  128. 10.1002/jcc.540120512
  129. 10.1021/acs.jpcb.0c00549
  130. 10.1021/ct200434a
  131. 10.1021/acsomega.8b00189
  132. 10.1039/C7CP04913G
  133. 10.1021/acs.jctc.5b00296
  134. 10.1063/1.4821834
  135. 10.1063/1.4939030
  136. 10.1021/acs.jctc.5b00515
  137. 10.1021/acs.jctc.6b00876
  138. 10.1021/acs.jctc.7b01183
  139. 10.1021/ct500248h
  140. 10.1007/s00214-007-0310-x
  141. 10.1021/acs.jpca.9b01546
  142. 10.1021/acs.jpca.9b06135
  143. 10.1103/PhysRevLett.91.146401
  144. 10.1063/1.463096
  145. 10.1021/acs.jctc.9b00143
  146. 10.1039/C4CP05529B
  147. 10.1039/C4CP05541A
  148. 10.1021/acs.inorgchem.8b00031
  149. 10.1039/C7DT03476H
  150. 10.1007/s10822-018-0145-7
  151. 10.1002/anie.201300158
  152. 10.1021/acsomega.9b02011
  153. 10.1021/acs.jpca.6b02907
  154. 10.1021/acs.jpca.9b01688
  155. 10.1021/acs.jctc.5b01177
  156. 10.1021/cr200168z
  157. 10.1021/acs.jpcb.7b09175
  158. 10.1007/128_2014_543
  159. {'key': 'e_1_2_11_160_1', 'first-page': '1', 'article-title': 'Popular integration grids can result in large errors in DFT‐computed free energies', 'author': 'Bootsma AN', 'year': '2019', 'journal-title': 'ChemRxiv'} / ChemRxiv / Popular integration grids can result in large errors in DFT‐computed free energies by Bootsma AN (2019)
  160. 10.1016/S1367-5931(98)80112-9
  161. 10.1021/acs.chemrev.5b00630
  162. {'key': 'e_1_2_11_163_1', 'first-page': '10', 'article-title': 'Coarse‐grained models of protein folding: Toy models or predictive tools?', 'volume': '18', 'author': 'Clementi C', 'year': '2008', 'journal-title': 'Curr Opin Chem Biol'} / Curr Opin Chem Biol / Coarse‐grained models of protein folding: Toy models or predictive tools? by Clementi C (2008)
  163. {'key': 'e_1_2_11_164_1', 'first-page': '4', 'article-title': 'Combining experiment and simulation in protein folding: Closing the gap for small model systems', 'volume': '18', 'author': 'Schaeffer RD', 'year': '2008', 'journal-title': 'Curr Opin Chem Biol'} / Curr Opin Chem Biol / Combining experiment and simulation in protein folding: Closing the gap for small model systems by Schaeffer RD (2008)
  164. 10.1039/C7CP08010G
  165. 10.1107/S2059798319015122
  166. 10.1093/bioinformatics/btl327
  167. 10.1002/chir.22594
  168. 10.1021/acs.joc.6b00416
  169. 10.1021/jacs.9b07072
  170. 10.1002/jcc.1056
  171. 10.1002/wcms.1159
  172. 10.1063/1.4738961
  173. 10.1063/1.4812819
  174. BaerlocherC McCuskerLB.Database of zeolite structures.http://www.iza-structure.org/databases/. Accessed: May 20 2020
  175. {'volume-title': 'Atlas of zeolite framework types', 'year': '2007', 'author': 'Baerlocher C', 'key': 'e_1_2_11_176_1'} / Atlas of zeolite framework types by Baerlocher C (2007)
  176. 10.1039/C5CS00227C
  177. 10.1038/nature21419
  178. 10.1039/C6CP01697A
  179. 10.1021/jp070186p
  180. 10.1107/S0021889813014817
  181. 10.1088/1361-648X/aabcfb
  182. 10.1039/C8SC05710A
Dates
Type When
Created 5 years ago (Aug. 10, 2020, 12:06 a.m.)
Deposited 1 year, 11 months ago (Aug. 28, 2023, 3:18 a.m.)
Indexed 9 hours, 54 minutes ago (Aug. 22, 2025, 1:03 a.m.)
Issued 5 years ago (Aug. 9, 2020)
Published 5 years ago (Aug. 9, 2020)
Published Online 5 years ago (Aug. 9, 2020)
Published Print 4 years, 5 months ago (March 1, 2021)
Funders 2
  1. Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften 10.13039/501100013368

    Region: Europe

    pri (Research institutes and centers)

    Labels2
    1. German National Academy of Sciences
    2. German National Academy of Sciences Leopoldina
    Awards1
    1. Leopoldina Fellowship Program (LPDS 2018‐09)
  2. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. SPP 1807

@article{Bannwarth_2020, title={Extended <scp>tight‐binding</scp> quantum chemistry methods}, volume={11}, ISSN={1759-0884}, url={http://dx.doi.org/10.1002/wcms.1493}, DOI={10.1002/wcms.1493}, number={2}, journal={WIREs Computational Molecular Science}, publisher={Wiley}, author={Bannwarth, Christoph and Caldeweyher, Eike and Ehlert, Sebastian and Hansen, Andreas and Pracht, Philipp and Seibert, Jakob and Spicher, Sebastian and Grimme, Stefan}, year={2020}, month=aug }