Crossref journal-article
Wiley
WIREs Computational Molecular Science (311)
Abstract

The discovery of graphene, a single atomic layer of carbon in a hexagonal lattice, has invigorated enormous research interests in two‐dimensional (2D) layered materials and their one‐dimensional (1D) derivatives not only owing to their extraordinary physical and chemical properties but also their high potential for applications in electronic and photonic devices. A weakness of the graphene however is its lack of a bandgap—a prerequisite for building field‐effect transistors (FETs). A stream of new 2D layered materials have been developed over the past 5 years, including, among many others, silicene, phosphorene, and transition metal dichalcogenides. Monolayers of many of these 2D materials exhibit a bandgap, either direct or indirect. In 2015, a new class of 2D layered materials, namely, group‐IVB transition metal trichalcogenides (TMTCs), has been uncovered. A prototypical representative of this new class of 2D materials is TiS3 whose monolayer is predicted to possess a direct band gap of about 1 eV [close to that (1.17 eV) of bulk silicon], and relatively high carrier mobility. Isolation of the few‐layer TiS3 sheets and TiS3 nanoribbons via mechanical exfoliation has been realized in the laboratory in 2015. The modest 1‐eV band gap, relatively high carrier mobility, as well as high chemical stability in open air render TiS3 monolayer a promising 2D material for nanoelectronic and nanophotonic applications. In this study, we give an overview of the emerging area of 2D and 1D TMTC materials and suggest future research directions related to these novel materials. WIREs Comput Mol Sci 2016, 6:211–222. doi: 10.1002/wcms.1243This article is categorized under: Structure and Mechanism > Computational Materials Science

Bibliography

Dai, J., Li, M., & Zeng, X. C. (2016). Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene. WIREs Computational Molecular Science, 6(2), 211–222. Portico.

Authors 3
  1. Jun Dai (first)
  2. Ming Li (additional)
  3. Xiao Cheng Zeng (additional)
References 69 Referenced 92
  1. 10.1126/science.1102896
  2. 10.1038/nchem.1589
  3. 10.1038/nnano.2012.193
  4. 10.1021/nn400280c
  5. 10.1038/nmat1849
  6. 10.1103/PhysRevB.78.205403
  7. 10.1021/nl1022139
  8. 10.1103/PhysRevLett.108.155501
  9. 10.1021/nl301047g
  10. 10.1103/PhysRevLett.109.056804
  11. 10.1088/1367-2630/16/9/095002
  12. 10.1038/nmat4384
  13. 10.1021/nn501226z
  14. 10.1038/nnano.2014.35
  15. 10.1021/nl2018178
  16. 10.1038/nnano.2010.279
  17. 10.1038/nnano.2013.31
  18. 10.1038/nnano.2013.30
  19. 10.1103/PhysRevB.89.235319
  20. 10.1038/ncomms5475
  21. 10.1021/jp505257g
  22. 10.1021/jz500409m
  23. 10.1103/PhysRevB.90.205421
  24. 10.1103/PhysRevB.91.155311
  25. 10.1088/2053-1583/1/2/025001
  26. 10.1021/nn4022422
  27. 10.1126/science.1226419
  28. 10.3891/acta.chem.scand.26-3441
  29. 10.3891/acta.chem.scand.29a-0623
  30. 10.1021/cm502069n
  31. 10.3891/acta.chem.scand.45-0694
  32. 10.1016/0025-5408(74)90121-4
  33. 10.1073/pnas.0502848102
  34. 10.1126/science.1194975
  35. 10.1126/science.1226419
  36. 10.1126/science.1171245
  37. 10.1002/adma.201104798
  38. 10.1021/nl2043612
  39. 10.1016/j.nanoen.2012.09.003
  40. 10.1002/anie.201502107
  41. 10.1103/PhysRevB.69.155406
  42. 10.1002/adma.201405632
  43. 10.1039/C5NR01895A
  44. 10.1002/adom.201400043
  45. 10.1016/0022-0248(83)90279-8
  46. 10.1039/C4QI00127C
  47. 10.1007/978-94-009-9415-7_4
  48. 10.1021/ic50152a023
  49. 10.1063/1.2204597
  50. 10.1103/PhysRevB.87.235312
  51. 10.1103/PhysRevB.85.115317
  52. 10.1021/acs.jpcc.5b01562
  53. 10.1039/C5CP02813B
  54. 10.1039/C5NR04505C
  55. 10.1002/aelm.201500332
  56. 10.1088/2053-1583/2/4/044002
  57. 10.1103/PhysRevB.92.075413
  58. 10.1103/PhysRevB.81.115432
  59. 10.1103/PhysRevB.92.165406
  60. 10.1039/C5CP04576B
  61. 10.1103/PhysRevB.76.064120
  62. 10.1103/PhysRevB.85.235407
  63. 10.1002/smll.201401376
  64. 10.1039/C4TC02492C
  65. 10.1039/C5NR03589A
  66. 10.1039/C5TA00192G
  67. 10.1016/0167-2738(83)90024-3
  68. 10.1039/C4RA15055D
  69. 10.1016/j.physb.2012.01.012
Dates
Type When
Created 9 years, 7 months ago (Jan. 21, 2016, 3:09 a.m.)
Deposited 1 year, 11 months ago (Sept. 16, 2023, 12:46 p.m.)
Indexed 4 days, 11 hours ago (Aug. 31, 2025, 6:56 p.m.)
Issued 9 years, 7 months ago (Jan. 21, 2016)
Published 9 years, 7 months ago (Jan. 21, 2016)
Published Online 9 years, 7 months ago (Jan. 21, 2016)
Published Print 9 years, 6 months ago (March 1, 2016)
Funders 1
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR‐1420645

@article{Dai_2016, title={Group <scp>IVB</scp> transition metal trichalcogenides: a new class of <scp>2D</scp> layered materials beyond graphene}, volume={6}, ISSN={1759-0884}, url={http://dx.doi.org/10.1002/wcms.1243}, DOI={10.1002/wcms.1243}, number={2}, journal={WIREs Computational Molecular Science}, publisher={Wiley}, author={Dai, Jun and Li, Ming and Zeng, Xiao Cheng}, year={2016}, month=jan, pages={211–222} }