Abstract
Inspired by the intensive studies of graphene, scientists have put extraordinary efforts in exploring properties and phenomena involving noncarbon graphene‐like two‐dimensional (2D) nanomaterials, particularly those only consisting of single layers or few layers. Experimentally, many graphene‐like 2D structures have been fabricated from a large variety of layered and nonlayered materials. These graphene‐like structures have already shown exceptional properties, which will offer new breakthroughs and innovative opportunities in nanomaterials science. Theoretically, density‐functional theory (DFT) computations offer a powerful tool to investigate the electronic structure (principally the ground state) of nanomaterials, to predict their intrinsic properties, assist in characterization, and rationalization of experimental findings, as well as explore their potential applications. By DFT computations, many graphene‐like materials have been explored and designed, and fantastic properties are disclosed. In this review, we present the recent computational progress in discovering the intrinsic structural, electronic, and magnetic properties of several important and representative graphene‐like 2D nanomaterials, as well as identifying their potential applications. The highlighted graphene‐like structures include layered van der Waals (vdW) materials (h‐BN, MoS2, α‐MoO3, and V2O5), graphitic‐like ZnO, MXenes (metal carbides or carbonitrides), the not‐yet‐synthesized B2C, SiC2, BSi3, arsenene and antimonene, and single‐layer coordination polymers ([Cu2Br(IN)2]n (IN = isonicotinato), Fe‐phthalocyanine, and nickel bis(dithiolene)). WIREs Comput Mol Sci 2015, 5:360–379. doi: 10.1002/wcms.1224This article is categorized under: Structure and Mechanism > Computational Materials Science
References
108
Referenced
177
10.1126/science.1102896
10.1016/j.pmatsci.2013.04.003
10.1021/cr300263a
10.1021/nn4022422
10.1039/c3tc00710c
10.1039/C4CS00102H
10.1021/nn400280c
10.1016/j.pmatsci.2015.02.002
10.1021/ct900388x
10.1021/jp2067205
10.1021/ja908475v
10.1103/PhysRevLett.96.066102
10.1021/nl803758s
10.1021/ja107711m
10.1103/PhysRevLett.99.026102
10.1021/ja1058026
10.1103/PhysRevB.54.11169
10.1063/1.1316015
10.1103/PhysRevLett.77.3865
10.1103/PhysRevLett.45.566
10.1063/1.1564060
10.1103/PhysRevLett.107.216806
10.1002/jcc.20495
10.1063/1.3079822
10.1063/1.3382344
10.1103/PhysRevB.71.035105
10.1126/science.1194975
10.1002/adma.201203346
10.1038/nmat1134
10.1038/nphoton.2009.167
10.1021/nl061594s
10.1002/adma.200900323
10.1038/nnano.2010.172
10.1021/nl3002205
10.1021/nl103251m
10.1021/nl2014857
10.1002/anie.201209597
10.1021/nl080745j
10.1021/jp2015269
10.1021/jp8079827
10.1103/PhysRevLett.102.195505
10.1021/am201435z
10.1002/cphc.201300141
10.1039/C4NR00008K
10.1021/nl903868w
10.1038/nnano.2010.279
10.1021/nn2024557
10.1021/nn203715c
10.1021/ja805545x
10.1140/epjb/e2011-20456-7
10.1021/jp307124d
10.1021/nn301320r
10.1021/jp2000442
10.1103/PhysRevLett.109.035503
10.1002/smll.201201224
10.1021/jz300792n
10.1021/jp410969u
10.1039/C4TA04340E
10.1039/b819629j
10.1002/asia.201300470
10.1021/nn403241f
10.1021/jp9017212
10.1039/c3nr33009e
10.1021/cm702942y
10.1021/jp204174p
10.1103/PhysRevB.83.045423
10.1039/C2NR33422D
10.1039/c3cp51167g
10.1063/1.2916828
10.1021/am100467j
10.1063/1.3442908
10.1021/jp109829c
10.1021/am201271j
10.1002/adma.201102306
10.1021/nn204153h
10.1021/ja405735d
10.1021/ja308463r
10.1002/adma.201304138
10.1002/adfm.201202502
10.1021/ja501520b
10.1038/ncomms2664
10.1126/science.1241488
10.1038/nature13970
10.1039/c3cc44428g
10.1021/jp409585v
10.1021/cm500641a
10.1021/ja500506k
10.1021/am501144q
10.1021/jp500861n
10.1021/nn503921j
10.1021/ja512820k
10.1021/ja00719a044
10.1039/c2nr12018f
10.1063/1.3583465
10.1016/j.jssc.2012.02.032
10.1021/jp507011p
10.1021/jp503597n
10.1002/anie.201411246
10.1039/b919647a
10.1021/ja108628r
10.1021/ja312380b
10.1021/jp211779w
10.1021/ja204990j
10.1063/1.4729471
10.1002/smll.201300652
10.1021/jp405055f
10.1021/nl401147u
10.1039/C4NR05247A
Dates
Type | When |
---|---|
Created | 10 years ago (Aug. 18, 2015, 10:27 a.m.) |
Deposited | 1 year, 11 months ago (Sept. 25, 2023, 2:03 a.m.) |
Indexed | 5 days, 6 hours ago (Aug. 27, 2025, 11:48 a.m.) |
Issued | 10 years ago (Aug. 18, 2015) |
Published | 10 years ago (Aug. 18, 2015) |
Published Online | 10 years ago (Aug. 18, 2015) |
Published Print | 10 years ago (Sept. 1, 2015) |
Funders
2
National Natural Science Foundation of China
10.13039/501100001809
Region: Asia
gov (National government)
Labels
11
- Chinese National Science Foundation
- Natural Science Foundation of China
- National Science Foundation of China
- NNSF of China
- NSF of China
- 国家自然科学基金委员会
- National Nature Science Foundation of China
- Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
- NSFC
- NNSF
- NNSFC
Awards
1
- 21273118
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
1
- Grant EPS‐1010094
@article{Tang_2015, title={Innovation and discovery of graphene‐like materials via density‐functional theory computations}, volume={5}, ISSN={1759-0884}, url={http://dx.doi.org/10.1002/wcms.1224}, DOI={10.1002/wcms.1224}, number={5}, journal={WIREs Computational Molecular Science}, publisher={Wiley}, author={Tang, Qing and Zhou, Zhen and Chen, Zhongfang}, year={2015}, month=aug, pages={360–379} }