Crossref journal-article
Wiley
Small (311)
Abstract

AbstractSynthetic methodologies integrating hydrophobic drug delivery and biomolecular targeting with mesoporous silica nanoparticles are described. Transferrin and cyclic‐RGD peptides are covalently attached to the nanoparticles utilizing different techniques and provide selectivity between primary and metastatic cancer cells. The increase in cellular uptake of the targeted particles is examined using fluorescence microscopy and flow cytometry. Transferrin‐modified silica nanoparticles display enhancement in particle uptake by Panc‐1 cancer cells over that of normal HFF cells. The endocytotic pathway for these particles is further investigated through plasmid transfection of the transferrin receptor into the normal HFF cell line, which results in an increase in particle endocytosis as compared to unmodified HFF cells. By designing and attaching a synthetic cyclic‐RGD, selectivity between primary cancer cells (BT‐549) and metastatic cancer cells (MDA‐MB 435) is achieved with enhanced particle uptake by the metastatic cancer cell line. Incorporation of the hydrophobic drug Camptothecin into these two types of biomolecular‐targeted nanoparticles causes an increase in mortality of the targeted cancer cells compared to that caused by both the free drug and nontargeted particles. These results demonstrate successful biomolecular‐targeted hydrophobic drug delivery carriers that selectively target specific cancer cells and result in enhanced drug delivery and cell mortality.

Bibliography

Ferris, D. P., Lu, J., Gothard, C., Yanes, R., Thomas, C. R., Olsen, J., Stoddart, J. F., Tamanoi, F., & Zink, J. I. (2011). Synthesis of Biomolecule‐Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small, 7(13), 1816–1826. Portico.

Authors 9
  1. Daniel P. Ferris (first)
  2. Jie Lu (additional)
  3. Chris Gothard (additional)
  4. Rolando Yanes (additional)
  5. Courtney R. Thomas (additional)
  6. John‐Carl Olsen (additional)
  7. J. Fraser Stoddart (additional)
  8. Fuyuhiko Tamanoi (additional)
  9. Jeffrey I. Zink (additional)
References 60 Referenced 196
  1. 10.1038/nbt1006-1211
  2. 10.1021/jm00123a038
  3. 10.1111/j.1749-6632.1996.tb26391.x
  4. 10.1023/A:1018919224450
  5. 10.2174/1570163054866891
  6. 10.1016/j.jconrel.2009.08.011
  7. 10.1002/smll.200700005
  8. 10.1021/la8016084
  9. 10.1021/ja808137c
  10. 10.1039/b815009e
  11. 10.1021/nl901589y
  12. 10.1002/mabi.200500015
  13. 10.1038/359710a0
  14. 10.1021/cm0011559
  15. 10.1002/anie.200604488
  16. 10.1002/smll.200700903
  17. 10.1021/nn100690m
  18. 10.1021/ja1022267
  19. 10.1039/c0cc03905e
  20. 10.1021/ja110094g
  21. 10.1002/smll.201000538
  22. 10.1002/smll.200700493
  23. 10.1016/j.biomaterials.2008.07.007
  24. 10.1021/ja910846q
  25. 10.1002/adfm.200800753
  26. 10.1002/smll.201001459
  27. 10.1021/nn800072t
  28. 10.1039/b900427k
  29. 10.1002/smll.200902355
  30. 10.1021/mp050032z
  31. 10.1023/A:1010960900254
  32. 10.1023/B:PHAM.0000048188.69785.94
  33. 10.1038/nrm2799
  34. 10.1021/bm005584b
  35. 10.1016/S0142-9612(03)00343-0
  36. 10.1002/cphc.200301014
  37. 10.1073/pnas.0914140107
  38. 10.1364/OE.16.019568
  39. 10.1074/jbc.R000003200
  40. 10.1021/nn700370b
  41. 10.1016/S0165-6147(02)01989-2
  42. 10.1002/jcp.1041560128
  43. 10.1016/S0022-5347(17)39970-6
  44. 10.1016/j.ejca.2004.01.036
  45. For in‐vivo imaging integration of magnetic MRI contrast agent is often utilized. However to track nanoparticles in vitro optical monitoring using fluorescent markers cocondensed into the silica nanoparticles provides for easier observation given the experimental conditions.
  46. 10.1039/c0jm01258k
  47. 10.1002/cmmi.376
  48. 10.1021/cm051014c
  49. 10.1021/cm0210041
  50. 10.1016/j.ab.2006.02.023
  51. 10.1016/S0022-2313(96)00125-1
  52. 10.1016/0003-2697(70)90146-6
  53. 10.1016/0014-5793(91)81101-D
  54. 10.1111/j.1432-1033.1992.tb17495.x
  55. 10.1021/ja9603721
  56. 10.1007/s11095-005-5646-0
  57. 10.1016/S0040-4039(00)01060-1
  58. 10.1208/pt070232
  59. 10.1016/S0169-409X(02)00179-5
  60. With this system it is interesting to note that there was a 10‐fold increase in particle uptake by MDA‐MB 435 as compared to MCF‐7 cancer cells but only a 20% increase in cell killing over the passively uptaken phosphonated nanoparticles. This difference may be because of the difference in experimental design as particle uptake does not always directly correlate to its observed cytotoxic effect.
Dates
Type When
Created 14 years, 3 months ago (May 19, 2011, 4:57 a.m.)
Deposited 1 year, 10 months ago (Oct. 7, 2023, 5:26 a.m.)
Indexed 2 months, 1 week ago (June 16, 2025, 2:24 p.m.)
Issued 14 years, 3 months ago (May 19, 2011)
Published 14 years, 3 months ago (May 19, 2011)
Published Online 14 years, 3 months ago (May 19, 2011)
Published Print 14 years, 1 month ago (July 4, 2011)
Funders 0

None

@article{Ferris_2011, title={Synthesis of Biomolecule‐Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells}, volume={7}, ISSN={1613-6829}, url={http://dx.doi.org/10.1002/smll.201002300}, DOI={10.1002/smll.201002300}, number={13}, journal={Small}, publisher={Wiley}, author={Ferris, Daniel P. and Lu, Jie and Gothard, Chris and Yanes, Rolando and Thomas, Courtney R. and Olsen, John‐Carl and Stoddart, J. Fraser and Tamanoi, Fuyuhiko and Zink, Jeffrey I.}, year={2011}, month=may, pages={1816–1826} }