Crossref journal-article
Wiley
Small (311)
Abstract

AbstractThe ability to assemble nanoscopic components into larger structures and materials depends crucially on the ability to understand in quantitative detail and subsequently “engineer” the interparticle interactions. This Review provides a critical examination of the various interparticle forces (van der Waals, electrostatic, magnetic, molecular, and entropic) that can be used in nanoscale self‐assembly. For each type of interaction, the magnitude and the length scale are discussed, as well as the scaling with particle size and interparticle distance. In all cases, the discussion emphasizes characteristics unique to the nanoscale. These theoretical considerations are accompanied by examples of recent experimental systems, in which specific interaction types were used to drive nanoscopic self‐assembly. Overall, this Review aims to provide a comprehensive yet easily accessible resource of nanoscale‐specific interparticle forces that can be implemented in models or simulations of self‐assembly processes at this scale.magnified image

Bibliography

Bishop, K. J. M., Wilmer, C. E., Soh, S., & Grzybowski, B. A. (2009). Nanoscale Forces and Their Uses in Self‐Assembly. Small, 5(14), 1600–1630. Portico.

Authors 4
  1. Kyle J. M. Bishop (first)
  2. Christopher E. Wilmer (additional)
  3. Siowling Soh (additional)
  4. Bartosz A. Grzybowski (additional)
References 277 Referenced 1,385
  1. 10.1002/anie.200603148
  2. 10.1126/science.277.5330.1287
  3. 10.1038/375769a0
  4. 10.1002/adma.200390108
  5. 10.1021/cm020732l
  6. 10.1021/nl070214f
  7. 10.1002/anie.200702570
  8. 10.1021/jp054800d
  9. 10.1002/adfm.200600066
  10. 10.1021/jp026376b
  11. 10.1021/ja003055
  12. 10.1063/1.2786993
  13. 10.1021/cr030698
  14. 10.1016/S0009-2614(98)00277-2
  15. 10.1126/science.282.5391.1111
  16. 10.1126/science.1096566
  17. 10.1002/adma.200500833
  18. 10.1021/nl070838l
  19. 10.1021/ar800018v
  20. 10.1002/smll.200800511
  21. 10.1021/ja047606y
  22. 10.1021/nl0600833
  23. 10.1039/C39940000801
  24. 10.1126/science.1077229
  25. 10.1126/science.287.5460.1989
  26. 10.1126/science.272.5270.1924
  27. 10.1021/cm000843p
  28. 10.1126/science.281.5385.2013
  29. 10.1021/jp980730h
  30. 10.1021/ja026501x
  31. 10.1002/(SICI)1521-3773(20000515)39:10<1793::AID-ANIE1793>3.0.CO;2-Y
  32. 10.1146/annurev.matsci.30.1.545
  33. 10.1126/science.8128245
  34. 10.1126/science.266.5193.1961
  35. 10.1021/bi00213a003
  36. 10.1021/ja015556g
  37. 10.1002/anie.200400651
  38. 10.1021/ja0350278
  39. 10.1126/science.1125124
  40. 10.1021/nl0701915
  41. 10.1021/ja0642966
  42. 10.1038/nbt873
  43. 10.1126/science.280.5372.2098
  44. 10.1038/35040518
  45. 10.1016/j.elecom.2006.12.028
  46. {'key': 'e_1_2_10_46_2', 'volume-title': 'Nanotechnology: A Policy Primer', 'author': 'Sargent J. F.', 'year': '2008'} / Nanotechnology: A Policy Primer by Sargent J. F. (2008)
  47. 10.1038/90228
  48. 10.1016/j.cbpa.2006.01.006
  49. 10.1021/ac050679v
  50. 10.1038/nnano.2008.46
  51. 10.1038/nrc1566
  52. 10.1021/cr980133r
  53. 10.1038/29954
  54. 10.1126/science.291.5505.851
  55. 10.1146/annurev.physchem.49.1.371
  56. 10.1126/science.1070821
  57. 10.1021/jp054153q
  58. 10.1126/science.1088755
  59. 10.1126/science.1089389
  60. 10.1002/smll.200400059
  61. 10.1103/PhysRevB.52.9071
  62. 10.1038/nature04414
  63. 10.1126/science.1139131
  64. 10.1103/PhysRevLett.81.1509
  65. {'key': 'e_1_2_10_65_2', 'volume-title': 'Intermolecular and Surface Forces', 'author': 'Israelachvili J. N.', 'year': '1991'} / Intermolecular and Surface Forces by Israelachvili J. N. (1991)
  66. 10.1017/CBO9780511608810
  67. 10.1038/nmat2206
  68. 10.1006/jcis.1996.4600
  69. 10.1007/BF01433225
  70. 10.1016/0021-9797(83)90103-0
  71. {'key': 'e_1_2_10_71_2', 'volume-title': 'Statistical Mechanics: Principles and Selected Applications', 'author': 'Hill T. L.', 'year': '1987'} / Statistical Mechanics: Principles and Selected Applications by Hill T. L. (1987)
  72. 10.1016/S0167-7799(02)01916-9
  73. 10.1146/annurev.physchem.47.1.171
  74. 10.1016/S1359-0294(02)00052-3
  75. 10.1103/PhysRevE.65.031407
  76. 10.1080/00018730500414570
  77. 10.1063/1.3127948
  78. 10.1063/1.474547
  79. 10.1021/jp961764x
  80. 10.1126/science.270.5240.1335
  81. 10.1021/la047488s
  82. 10.1002/anie.200352260
  83. 10.1098/rspa.1963.0115
  84. 10.1098/rspa.1963.0025
  85. 10.1016/S0031-8914(37)80203-7
  86. 10.1080/00018736100101281
  87. {'key': 'e_1_2_10_87_2', 'volume-title': 'Van der Waals Forces', 'author': 'Parsegian V. A.', 'year': '2006'} / Van der Waals Forces by Parsegian V. A. (2006)
  88. 10.1063/1.2170091
  89. 10.1021/la061802w
  90. 10.1016/S0927-7757(01)01118-9
  91. 10.1006/jcis.1996.0326
  92. Estimating Hamaker coefficients through the Hamaker integral approximation that is asA=CvdWπ2/ν1ν2 is often as impractical as it is inaccurate (neglecting many‐body effects) because it requires knowledge of the parameterCvdWcharacterizing pairwise interactions between atoms/molecules in the gas phase: consider the case of gold described in the text.
  93. 10.1016/0021-9797(81)90325-8
  94. 10.1016/S0022-3697(71)80059-8
  95. 10.1038/nmat1054
  96. 10.1002/adma.19960080513
  97. 10.1021/jp066539m
  98. 10.1016/0031-8914(68)90040-2
  99. 10.1016/0009-2614(67)80004-6
  100. The failure of the Hamaker integral approximation at large separations originates from the use of Hamaker coefficients derived from the continuum DLP theory for flat plates. These coefficients incorporate many‐body effects which are absent at large separations (cf. Reference [89]).
  101. 10.1021/la701445a
  102. 10.1021/j100044a033
  103. 10.1021/jp981598o
  104. 10.1103/PhysRevLett.75.3466
  105. 10.1080/095008397179589
  106. 10.1023/A:1010078521951
  107. 10.1021/ja00072a025
  108. 10.1021/la00008a021
  109. 10.1038/nature03946
  110. 10.1038/nmat860
  111. 10.1021/nl0156843
  112. 10.1021/ja075456w
  113. 10.1039/a802655f
  114. 10.1021/nl061776m
  115. 10.1021/la000316k
  116. 10.1021/nl061857i
  117. 10.1021/nl061035l
  118. 10.1126/science.1072086
  119. 10.1063/1.446912
  120. 10.1088/0034-4885/65/11/201
  121. {'key': 'e_1_2_10_121_2', 'volume-title': 'Theory of the Stability of Lyophobic Colloids', 'author': 'Verwey E. J. W.', 'year': '1948'} / Theory of the Stability of Lyophobic Colloids by Verwey E. J. W. (1948)
  122. {'key': 'e_1_2_10_122_2', 'first-page': '457', 'author': 'Gouy G.', 'year': '1910', 'journal-title': '9'} / 9 by Gouy G. (1910)
  123. 10.1080/14786440408634187
  124. {'key': 'e_1_2_10_124_2', 'first-page': '185', 'volume': '24', 'author': 'Debye P. W.', 'year': '1923', 'journal-title': 'Phys. Z.'} / Phys. Z. by Debye P. W. (1923)
  125. 10.1021/la00021a024
  126. 10.1016/0021-9797(83)90087-5
  127. 10.1063/1.446600
  128. 10.1006/jcis.1995.1019
  129. 10.1002/cphc.200700349
  130. 10.1021/j100018a041
  131. 10.1088/0953-8984/12/8A/309
  132. 10.1021/ja068329t
  133. 10.1021/jp8056493
  134. 10.1016/j.elstat.2004.09.001
  135. {'key': 'e_1_2_10_135_2', 'first-page': '6712', 'author': 'Pramod P.', 'year': '2007', 'journal-title': '129'} / 129 by Pramod P. (2007)
  136. 10.1103/RevModPhys.74.329
  137. 10.1063/1.465906
  138. 10.1063/1.457750
  139. 10.1146/annurev.physchem.50.1.145
  140. {'key': 'e_1_2_10_140_2', 'volume-title': 'Theory of Simple Liquids', 'author': 'Hansen J. P.', 'year': '1976'} / Theory of Simple Liquids by Hansen J. P. (1976)
  141. 10.1088/0953-8984/12/46/201
  142. 10.1021/j100398a006
  143. 10.1016/0021-9797(88)90113-0
  144. 10.1063/1.461200
  145. 10.1063/1.461452
  146. 10.1021/j100514a017
  147. 10.1103/PhysRevE.64.021405
  148. 10.1103/PhysRevLett.82.1072
  149. 10.1006/jcis.1999.6131
  150. 10.1016/0009-2614(84)87039-6
  151. 10.1002/bip.360311305
  152. 10.1063/1.470459
  153. 10.1103/PhysRevLett.73.352
  154. 10.1146/annurev.matsci.30.1.611
  155. 10.1038/nature01208
  156. 10.1002/adma.200501464
  157. 10.1021/ac061522l
  158. 10.1088/0022-3727/36/13/201
  159. 10.1023/A:1006137523591
  160. 10.1023/A:1018457915380
  161. 10.1097/00000658-195710000-00007
  162. 10.1016/S0304-8853(99)00088-8
  163. 10.1038/nbt720
  164. 10.1021/ja036409g
  165. 10.1063/1.1782154
  166. 10.1021/nl005532s
  167. 10.1039/b303024e
  168. 10.1063/1.1452206
  169. 10.1021/ja0263285
  170. 10.1002/anie.200352825
  171. {'key': 'e_1_2_10_171_2', 'first-page': '1773', 'author': 'Wiedwald U.', 'year': '2000', 'journal-title': 'J. Vac. Sci. Technol. A'} / J. Vac. Sci. Technol. A by Wiedwald U. (2000)
  172. 10.1071/CH01119
  173. {'key': 'e_1_2_10_173_2', 'first-page': '4325', 'volume': '38', 'author': 'Sun S. H.', 'year': '1998', 'journal-title': 'IEEE Trans. Magn.'} / IEEE Trans. Magn. by Sun S. H. (1998)
  174. 10.1021/jp0039520
  175. 10.1021/la0506473
  176. 10.1073/pnas.0704210104
  177. 10.1039/b207789b
  178. 10.1002/anie.200461665
  179. 10.1021/ja001628c
  180. 10.1126/science.1058495
  181. 10.1002/1521-4095(200108)13:15<1158::AID-ADMA1158>3.0.CO;2-6
  182. 10.1021/ja016812s
  183. 10.1021/ja047648m
  184. 10.1021/jp064941v
  185. 10.1126/science.170679
  186. 10.1016/0304-8853(94)00626-1
  187. {'key': 'e_1_2_10_187_2', 'volume-title': 'Introduction to Solid‐State Physics', 'author': 'Kittel C.', 'year': '1996'} / Introduction to Solid‐State Physics by Kittel C. (1996)
  188. 10.1103/PhysRev.70.965
  189. 10.1103/RevModPhys.21.541
  190. 10.1021/nl051190k
  191. 10.1088/0022-3727/35/6/201
  192. 10.1063/1.1656035
  193. 10.1143/JPSJ.41.1894
  194. 10.1021/ar700121f
  195. 10.1021/cm991018f
  196. 10.1063/1.356902
  197. 10.1016/S0304-8853(02)01279-9
  198. 10.1016/0021-9797(80)90144-7
  199. 10.1088/0953-8984/16/49/019
  200. 10.1080/00268979400100541
  201. 10.1080/00268978400101721
  202. 10.1103/PhysRevE.77.031401
  203. 10.1063/1.330953
  204. 10.1103/PhysRevE.59.4388
  205. 10.1038/nmat811
  206. 10.1126/science.290.5495.1328
  207. 10.1103/PhysRevLett.94.138303
  208. 10.1016/0021-9797(77)90061-3
  209. 10.1002/aic.690470202
  210. 10.1063/1.2105988
  211. 10.1002/anie.199523111
  212. 10.1021/cr9900432
  213. 10.1002/anie.199013041
  214. 10.1002/anie.199611541
  215. 10.1088/0957-4484/16/10/032
  216. 10.1021/jp049167v
  217. 10.1038/382609a0
  218. 10.1038/382607a0
  219. Hydrogen bonds can have significant covalent character when the difference inpKavalues of the two electronegative atoms are very similar resulting in very strong bonds such as those of O–H–O N–H–N F–H–F and other homonuclear bonds. For dissimilarpKavalues the bond is either a moderately strong hydrogen bond X–H···Y or and ionic one X−···H–Y+ both of which are predominately electrostatic. See Reference [220] and references therein.
  220. 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
  221. 10.1021/la9711342
  222. 10.1002/anie.199708481
  223. 10.1002/adma.200305804
  224. 10.1038/35008037
  225. 10.1002/smll.200800099
  226. 10.1021/ja049085k
  227. 10.1021/ar040223k
  228. 10.1021/ja038396c
  229. 10.1093/nar/17.21.8543
  230. 10.1063/1.3012303
  231. 10.1038/35826
  232. 10.1002/adfm.200701336
  233. 10.1016/S1388-2481(02)00442-3
  234. 10.1039/b102319p
  235. 10.1021/ja0383367
  236. 10.1021/nl048635
  237. 10.1126/science.1165831
  238. 10.1021/nl8018627
  239. 10.1073/pnas.95.4.1460
  240. 10.1016/S0022-2836(64)80086-3
  241. 10.1103/PhysRevLett.94.058302
  242. 10.1021/jp982629i
  243. 10.1016/S0006-3495(04)74308-8
  244. 10.1021/la00021a066
  245. Y.Wei K. J. M.Bishop J.Kim S.Soh B. A.Grzybowski 2009 unpublished results.
  246. 10.1126/science.251.4996.905
  247. 10.1016/S0001-8686(02)00061-1
  248. {'key': 'e_1_2_10_248_2', 'first-page': '3620', 'author': 'Morinaga T.', 'year': '2008', 'journal-title': '41'} / 41 by Morinaga T. (2008)
  249. 10.1016/0001-8686(87)85003-0
  250. 10.1021/ma8002856
  251. 10.1021/ma00186a051
  252. 10.1021/ma00078a016
  253. 10.1063/1.1355236
  254. 10.1093/oso/9780198520597.001.0001 / Polymer Physics by Rubenstein M. (2003)
  255. 10.1209/0295-5075/7/8/005
  256. 10.1002/aic.690350309
  257. 10.1021/la00019a029
  258. 10.1063/1.1740347
  259. 10.1021/la801718j
  260. 10.1103/PhysRevLett.99.137802
  261. 10.1103/PhysRevLett.99.268301
  262. 10.1002/pol.1958.1203312618
  263. 10.1103/PhysRevLett.72.582
  264. 10.1111/j.1749-6632.1949.tb27296.x
  265. 10.1103/PhysRevLett.85.1770
  266. 10.1063/1.2981795
  267. 10.1063/1.1743957
  268. {'key': 'e_1_2_10_268_2', 'first-page': '6252', 'author': 'Reiss H.', 'year': '1986', 'journal-title': '90'} / 90 by Reiss H. (1986)
  269. 10.1038/44785
  270. 10.1103/PhysRevLett.63.2068
  271. 10.1063/1.473004
  272. 10.1063/1.2374889
  273. 10.1016/S1359-0294(02)00055-9
  274. 10.1103/PhysRevLett.95.128302
  275. 10.1021/ja0564261
  276. 10.1088/0953-8984/11/10A/002
  277. 10.1016/j.cocis.2005.10.004
Dates
Type When
Created 16 years, 2 months ago (June 10, 2009, 11:17 a.m.)
Deposited 1 year, 5 months ago (March 14, 2024, 10:18 a.m.)
Indexed 1 hour, 6 minutes ago (Aug. 21, 2025, 10:16 a.m.)
Issued 16 years, 1 month ago (July 17, 2009)
Published 16 years, 1 month ago (July 17, 2009)
Published Online 16 years ago (July 30, 2009)
Published Print 16 years, 1 month ago (July 17, 2009)
Funders 0

None

@article{Bishop_2009, title={Nanoscale Forces and Their Uses in Self‐Assembly}, volume={5}, ISSN={1613-6829}, url={http://dx.doi.org/10.1002/smll.200900358}, DOI={10.1002/smll.200900358}, number={14}, journal={Small}, publisher={Wiley}, author={Bishop, Kyle J. M. and Wilmer, Christopher E. and Soh, Siowling and Grzybowski, Bartosz A.}, year={2009}, month=jul, pages={1600–1630} }