Abstract
A lot of progress has been made in recent years in the development of atomistic potentials using machine learning (ML) techniques. In contrast to most conventional potentials, which are based on physical approximations and simplifications to derive an analytic functional relation between the atomic configuration and the potential‐energy, ML potentials rely on simple but very flexible mathematical terms without a direct physical meaning. Instead, in case of ML potentials the topology of the potential‐energy surface is “learned” by adjusting a number of parameters with the aim to reproduce a set of reference electronic structure data as accurately as possible. Due to this bias‐free construction, they are applicable to a wide range of systems without changes in their functional form, and a very high accuracy close to the underlying first‐principles data can be obtained. Neural network potentials (NNPs), which have first been proposed about two decades ago, are an important class of ML potentials. Although the first NNPs have been restricted to small molecules with only a few degrees of freedom, they are now applicable to high‐dimensional systems containing thousands of atoms, which enables addressing a variety of problems in chemistry, physics, and materials science. In this tutorial review, the basic ideas of NNPs are presented with a special focus on developing NNPs for high‐dimensional condensed systems. A recipe for the construction of these potentials is given and remaining limitations of the method are discussed. © 2015 Wiley Periodicals, Inc.
References
112
Referenced
690
10.1002/andp.19273892002
10.1103/PhysRevLett.55.2471
10.1017/CBO9780511609633
{'volume-title': 'Density Functional Theory of Atoms and Molecules', 'year': '1989', 'author': 'Parr R. G.', 'key': 'e_1_2_14_4_1'}
/ Density Functional Theory of Atoms and Molecules by Parr R. G. (1989)10.1002/3527600043
10.1021/ja00205a001
10.1021/ja00124a002
10.1021/j100389a010
10.1021/ja00051a040
10.1002/jcc.540040211
10.1103/PhysRevB.31.5262
10.1103/PhysRevLett.56.632
10.1016/j.pmatsci.2006.10.003
10.1021/jp004368u
10.1098/rspa.1939.0006
10.1063/1.1622379
10.1039/c0cp02722g
10.1063/1.466801
10.1016/S0009-2614(03)01033-9
10.1103/PhysRevLett.104.136403
10.1103/PhysRevB.88.054104
10.1103/PhysRevLett.108.058301
10.1021/ct400195d
10.1007/s00214-012-1137-7
10.1016/S0009-2614(99)00881-7
10.1063/1.2730798
10.1063/1.469597
10.1016/j.cplett.2004.07.076
-
A.Vitek M.Stacho P.Kromer V.Snasel In: 5th IEEE International Conference on Intelligent Networking and Collaborative Systems (INCoS) 2013 pp.121–126.
(
10.1109/INCoS.2013.26
) 10.1140/epjb/e2014-50070-0
{'volume-title': 'Neural Networks for Pattern Recognition', 'year': '1996', 'author': 'Bishop C. M.', 'key': 'e_1_2_14_31_1'}
/ Neural Networks for Pattern Recognition by Bishop C. M. (1996){'volume-title': 'Neural Networks and Learning Machines', 'year': '2009', 'author': 'Haykin S.', 'key': 'e_1_2_14_32_1'}
/ Neural Networks and Learning Machines by Haykin S. (2009)10.1007/BF02478259
10.1002/anie.199305031
10.1016/0893-6080(88)90020-2
10.1007/BF02551274
10.1016/0893-6080(89)90020-8
10.1016/S0893-6080(97)00097-X
10.1016/S0893-6080(97)00010-5
10.1016/0893-6080(91)90009-T
10.1088/0953-8984/26/18/183001
10.1016/S0009-2614(98)00207-3
10.1063/1.477550
10.1016/S0009-2614(97)00448-X
10.1063/1.3159748
10.1063/1.2918503
10.1063/1.2794338
10.1063/1.2746232
10.1103/PhysRevB.73.115431
10.1103/PhysRevLett.94.036104
10.1103/PhysRevB.77.115421
10.1103/PhysRevLett.101.096104
10.1103/PhysRevB.81.035410
10.1088/1367-2630/14/1/013050
10.1103/PhysRevLett.112.156101
10.1016/j.jelechem.2008.07.032
10.1016/j.susc.2009.12.025
10.1007/s11426-013-5005-7
10.1016/S0022-2860(02)00299-5
10.1021/jp972209d
10.1021/jp9105585
10.1039/c1cp21668f
10.1088/0965-0393/7/3/308
10.1016/S0168-583X(99)00057-9
10.1016/j.nimb.2006.11.040
10.1088/0953-8984/20/28/285219
10.1063/1.2336223
10.1063/1.2387950
10.1063/1.2746846
10.1063/1.3021471
10.1016/j.cpc.2009.05.022
10.1103/PhysRevLett.98.146401
10.1063/1.3553717
10.1103/PhysRevLett.100.185501
10.1002/pssb.200844219
10.1103/PhysRevB.85.045439
10.1103/PhysRevB.81.100103
10.1038/nmat3078
10.1103/PhysRevB.81.184107
10.1103/PhysRevLett.108.115701
10.1103/PhysRevB.83.153101
10.1002/pssb.201248370
10.1063/1.3682557
10.1021/jp401225b
10.1524/zpch.2013.0384
10.1039/C4CP04751F.
10.1103/PhysRevB.85.174103
10.1103/PhysRevB.86.104301
10.1002/pssb.201200355
10.1021/jz402268v
10.1021/ct049976i
10.1063/1.3095491
10.1016/S0097-8485(98)00008-4
10.1002/andp.19213690304
10.1063/1.2741258
10.1039/b608822h
10.1007/BF00549096
10.1002/qua.21507
10.1021/ct800166r
10.1002/wcms.30
10.1063/1.3382344
10.1103/PhysRevLett.102.073005
10.1080/01442350903234923
10.1063/1.4825111
10.1063/1.4712397
10.1109/37.55119
10.1073/pnas.202427399
10.1038/323533a0
{'volume-title': 'Numerical Recipes ‐ The Art of Scientific Computing', 'year': '2007', 'author': 'Press W. H.', 'key': 'e_1_2_14_109_1'}
/ Numerical Recipes ‐ The Art of Scientific Computing by Press W. H. (2007)10.1115/1.3662552
10.1002/0471221546
10.1002/cem.1180080605
Dates
Type | When |
---|---|
Created | 10 years, 5 months ago (March 6, 2015, 8:15 a.m.) |
Deposited | 3 months ago (May 20, 2025, 3:33 p.m.) |
Indexed | 10 hours, 13 minutes ago (Aug. 21, 2025, 2:16 p.m.) |
Issued | 10 years, 5 months ago (March 6, 2015) |
Published | 10 years, 5 months ago (March 6, 2015) |
Published Online | 10 years, 5 months ago (March 6, 2015) |
Published Print | 10 years ago (Aug. 15, 2015) |
Funders
3
Deutsche Forschungsgemeinschaft
10.13039/501100001659
Region: Europe
gov (National government)
Labels
3
- German Research Association
- German Research Foundation
- DFG
Awards
1
- BE3264/3-1
Deutsche Forschungsgemeinschaft
10.13039/501100001659
Region: Europe
gov (National government)
Labels
3
- German Research Association
- German Research Foundation
- DFG
Awards
1
- BE3264/5-1
Deutsche Forschungsgemeinschaft
10.13039/501100001659
Region: Europe
gov (National government)
Labels
3
- German Research Association
- German Research Foundation
- DFG
Awards
1
- EXC 1069
@article{Behler_2015, title={Constructing high‐dimensional neural network potentials: A tutorial review}, volume={115}, ISSN={1097-461X}, url={http://dx.doi.org/10.1002/qua.24890}, DOI={10.1002/qua.24890}, number={16}, journal={International Journal of Quantum Chemistry}, publisher={Wiley}, author={Behler, Jörg}, year={2015}, month=mar, pages={1032–1050} }