Crossref journal-article
Wiley
International Journal of Quantum Chemistry (311)
Abstract

A lot of progress has been made in recent years in the development of atomistic potentials using machine learning (ML) techniques. In contrast to most conventional potentials, which are based on physical approximations and simplifications to derive an analytic functional relation between the atomic configuration and the potential‐energy, ML potentials rely on simple but very flexible mathematical terms without a direct physical meaning. Instead, in case of ML potentials the topology of the potential‐energy surface is “learned” by adjusting a number of parameters with the aim to reproduce a set of reference electronic structure data as accurately as possible. Due to this bias‐free construction, they are applicable to a wide range of systems without changes in their functional form, and a very high accuracy close to the underlying first‐principles data can be obtained. Neural network potentials (NNPs), which have first been proposed about two decades ago, are an important class of ML potentials. Although the first NNPs have been restricted to small molecules with only a few degrees of freedom, they are now applicable to high‐dimensional systems containing thousands of atoms, which enables addressing a variety of problems in chemistry, physics, and materials science. In this tutorial review, the basic ideas of NNPs are presented with a special focus on developing NNPs for high‐dimensional condensed systems. A recipe for the construction of these potentials is given and remaining limitations of the method are discussed. © 2015 Wiley Periodicals, Inc.

Bibliography

Behler, J. (2015). Constructing high‐dimensional neural network potentials: A tutorial review. International Journal of Quantum Chemistry, 115(16), 1032–1050. Portico.

Authors 1
  1. Jörg Behler (first)
References 112 Referenced 690
  1. 10.1002/andp.19273892002
  2. 10.1103/PhysRevLett.55.2471
  3. 10.1017/CBO9780511609633
  4. {'volume-title': 'Density Functional Theory of Atoms and Molecules', 'year': '1989', 'author': 'Parr R. G.', 'key': 'e_1_2_14_4_1'} / Density Functional Theory of Atoms and Molecules by Parr R. G. (1989)
  5. 10.1002/3527600043
  6. 10.1021/ja00205a001
  7. 10.1021/ja00124a002
  8. 10.1021/j100389a010
  9. 10.1021/ja00051a040
  10. 10.1002/jcc.540040211
  11. 10.1103/PhysRevB.31.5262
  12. 10.1103/PhysRevLett.56.632
  13. 10.1016/j.pmatsci.2006.10.003
  14. 10.1021/jp004368u
  15. 10.1098/rspa.1939.0006
  16. 10.1063/1.1622379
  17. 10.1039/c0cp02722g
  18. 10.1063/1.466801
  19. 10.1016/S0009-2614(03)01033-9
  20. 10.1103/PhysRevLett.104.136403
  21. 10.1103/PhysRevB.88.054104
  22. 10.1103/PhysRevLett.108.058301
  23. 10.1021/ct400195d
  24. 10.1007/s00214-012-1137-7
  25. 10.1016/S0009-2614(99)00881-7
  26. 10.1063/1.2730798
  27. 10.1063/1.469597
  28. 10.1016/j.cplett.2004.07.076
  29. A.Vitek M.Stacho P.Kromer V.Snasel In: 5th IEEE International Conference on Intelligent Networking and Collaborative Systems (INCoS) 2013 pp.121–126. (10.1109/INCoS.2013.26)
  30. 10.1140/epjb/e2014-50070-0
  31. {'volume-title': 'Neural Networks for Pattern Recognition', 'year': '1996', 'author': 'Bishop C. M.', 'key': 'e_1_2_14_31_1'} / Neural Networks for Pattern Recognition by Bishop C. M. (1996)
  32. {'volume-title': 'Neural Networks and Learning Machines', 'year': '2009', 'author': 'Haykin S.', 'key': 'e_1_2_14_32_1'} / Neural Networks and Learning Machines by Haykin S. (2009)
  33. 10.1007/BF02478259
  34. 10.1002/anie.199305031
  35. 10.1016/0893-6080(88)90020-2
  36. 10.1007/BF02551274
  37. 10.1016/0893-6080(89)90020-8
  38. 10.1016/S0893-6080(97)00097-X
  39. 10.1016/S0893-6080(97)00010-5
  40. 10.1016/0893-6080(91)90009-T
  41. 10.1088/0953-8984/26/18/183001
  42. 10.1016/S0009-2614(98)00207-3
  43. 10.1063/1.477550
  44. 10.1016/S0009-2614(97)00448-X
  45. 10.1063/1.3159748
  46. 10.1063/1.2918503
  47. 10.1063/1.2794338
  48. 10.1063/1.2746232
  49. 10.1103/PhysRevB.73.115431
  50. 10.1103/PhysRevLett.94.036104
  51. 10.1103/PhysRevB.77.115421
  52. 10.1103/PhysRevLett.101.096104
  53. 10.1103/PhysRevB.81.035410
  54. 10.1088/1367-2630/14/1/013050
  55. 10.1103/PhysRevLett.112.156101
  56. 10.1016/j.jelechem.2008.07.032
  57. 10.1016/j.susc.2009.12.025
  58. 10.1007/s11426-013-5005-7
  59. 10.1016/S0022-2860(02)00299-5
  60. 10.1021/jp972209d
  61. 10.1021/jp9105585
  62. 10.1039/c1cp21668f
  63. 10.1088/0965-0393/7/3/308
  64. 10.1016/S0168-583X(99)00057-9
  65. 10.1016/j.nimb.2006.11.040
  66. 10.1088/0953-8984/20/28/285219
  67. 10.1063/1.2336223
  68. 10.1063/1.2387950
  69. 10.1063/1.2746846
  70. 10.1063/1.3021471
  71. 10.1016/j.cpc.2009.05.022
  72. 10.1103/PhysRevLett.98.146401
  73. 10.1063/1.3553717
  74. 10.1103/PhysRevLett.100.185501
  75. 10.1002/pssb.200844219
  76. 10.1103/PhysRevB.85.045439
  77. 10.1103/PhysRevB.81.100103
  78. 10.1038/nmat3078
  79. 10.1103/PhysRevB.81.184107
  80. 10.1103/PhysRevLett.108.115701
  81. 10.1103/PhysRevB.83.153101
  82. 10.1002/pssb.201248370
  83. 10.1063/1.3682557
  84. 10.1021/jp401225b
  85. 10.1524/zpch.2013.0384
  86. 10.1039/C4CP04751F.
  87. 10.1103/PhysRevB.85.174103
  88. 10.1103/PhysRevB.86.104301
  89. 10.1002/pssb.201200355
  90. 10.1021/jz402268v
  91. 10.1021/ct049976i
  92. 10.1063/1.3095491
  93. 10.1016/S0097-8485(98)00008-4
  94. 10.1002/andp.19213690304
  95. 10.1063/1.2741258
  96. 10.1039/b608822h
  97. 10.1007/BF00549096
  98. 10.1002/qua.21507
  99. 10.1021/ct800166r
  100. 10.1002/wcms.30
  101. 10.1063/1.3382344
  102. 10.1103/PhysRevLett.102.073005
  103. 10.1080/01442350903234923
  104. 10.1063/1.4825111
  105. 10.1063/1.4712397
  106. 10.1109/37.55119
  107. 10.1073/pnas.202427399
  108. 10.1038/323533a0
  109. {'volume-title': 'Numerical Recipes ‐ The Art of Scientific Computing', 'year': '2007', 'author': 'Press W. H.', 'key': 'e_1_2_14_109_1'} / Numerical Recipes ‐ The Art of Scientific Computing by Press W. H. (2007)
  110. 10.1115/1.3662552
  111. 10.1002/0471221546
  112. 10.1002/cem.1180080605
Dates
Type When
Created 10 years, 5 months ago (March 6, 2015, 8:15 a.m.)
Deposited 3 months ago (May 20, 2025, 3:33 p.m.)
Indexed 10 hours, 13 minutes ago (Aug. 21, 2025, 2:16 p.m.)
Issued 10 years, 5 months ago (March 6, 2015)
Published 10 years, 5 months ago (March 6, 2015)
Published Online 10 years, 5 months ago (March 6, 2015)
Published Print 10 years ago (Aug. 15, 2015)
Funders 3
  1. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. BE3264/3-1
  2. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. BE3264/5-1
  3. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. EXC 1069

@article{Behler_2015, title={Constructing high‐dimensional neural network potentials: A tutorial review}, volume={115}, ISSN={1097-461X}, url={http://dx.doi.org/10.1002/qua.24890}, DOI={10.1002/qua.24890}, number={16}, journal={International Journal of Quantum Chemistry}, publisher={Wiley}, author={Behler, Jörg}, year={2015}, month=mar, pages={1032–1050} }