Crossref journal-article
Wiley
physica status solidi (RRL) – Rapid Research Letters (311)
Abstract

Abstractmagnified imageSilicon nanowires have attracted great interest in recent years due to their ideal interface compatibility with silicon‐based electronic technology and their various potential applications, such as energy harvest and generation, and thermal management. A variety of theoretical and experimental studies have been conducted to understand the thermal properties of silicon nanowires. In this review, we summarize the recent progress in this field from the perspective of both theoretical calculations and experiments. First, we introduce the fundamental physics underlying the thermal conduction of silicon nanowires. Then, the various approaches to manipulate the thermal conductivity of silicon nanowires are discussed. Finally, based on the understanding of dominant scattering mechanisms in different phonon frequency regimes, we present the basic concept of phononic engineering to control the thermal conductivity of silicon nanowires. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Bibliography

Zhang, G., & Zhang, Y. (2013). Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering. Physica Status Solidi (RRL) – Rapid Research Letters, 7(10), 754–766. Portico.

Authors 2
  1. Gang Zhang (first)
  2. Yong‐Wei Zhang (additional)
References 118 Referenced 61
  1. 10.1016/S1369-7021(06)71650-9
  2. 10.1038/nmat2028
  3. 10.1073/pnas.0504581102
  4. 10.1126/science.1062711
  5. 10.1021/nl072991l
  6. 10.1021/nl202435t
  7. 10.1088/0957-4484/23/46/465301
  8. 10.1002/pssc.200982528
  9. 10.1109/LED.2010.2040062
  10. 10.1002/adma.200301641
  11. 10.1103/PhysRevB.47.16631
  12. 10.1063/1.3143616
  13. 10.1063/1.3273869
  14. 10.1063/1.3204005
  15. 10.1063/1.3421543
  16. 10.1146/annurev-matsci-062910-100445
  17. 10.1063/1.3583670
  18. 10.1038/nature06381
  19. 10.1038/nature06458
  20. 10.1115/1.1597619
  21. 10.1088/0957-4484/22/27/275308
  22. 10.1021/nl101671r
  23. 10.1063/1.1345515
  24. 10.1115/1.2035114
  25. 10.1021/nl034721i
  26. 10.1088/0022-3727/36/23/024
  27. 10.1016/S1290-0729(00)00202-7
  28. 10.1103/RevModPhys.83.131
  29. 10.1016/j.nantod.2010.02.002
  30. 10.1103/PhysRevB.79.224305
  31. 10.1016/j.physleta.2010.03.067
  32. 10.1080/00018730802538522
  33. 10.1103/RevModPhys.84.1045
  34. 10.1140/epjb/e2012-30383-8
  35. G.Zhang(Ed.) Nanoscale Energy Transport and Harvesting: A Computational Study (Pan Stanford Publishing Singapore 2013).
  36. 10.1016/S1369-7021(12)70117-7
  37. 10.1557/mrs.2012.201
  38. 10.1039/c0nr00095g
  39. 10.1063/1.4773462
  40. 10.1007/s12274-010-1019-z
  41. 10.1166/jnn.2005.175
  42. 10.1166/jno.2007.201
  43. 10.1103/PhysRevB.84.085204
  44. 10.1063/1.124914
  45. 10.1063/1.1616981
  46. 10.1063/1.2767870
  47. 10.1016/j.spmi.2005.06.001
  48. 10.1103/PhysRevB.72.113311
  49. 10.1103/PhysRevB.84.165415
  50. 10.1021/nl802807t
  51. 10.1063/1.3103366
  52. 10.1063/1.3663386
  53. 10.1063/1.369576
  54. 10.1103/PhysRevB.73.153303
  55. 10.1021/nl8020889
  56. 10.1063/1.3662177
  57. 10.1103/PhysRevLett.90.035504
  58. 10.1063/1.2036967
  59. 10.1103/PhysRevLett.97.085901
  60. 10.1103/PhysRevLett.96.255503
  61. 10.1021/nl0725998
  62. 10.1016/j.nantod.2009.08.009
  63. 10.1103/PhysRevB.72.045422
  64. 10.1016/j.physleta.2006.06.020
  65. 10.1063/1.3671643
  66. 10.1063/1.2970044
  67. 10.1103/PhysRevLett.102.125503
  68. 10.1021/nl902720v
  69. 10.1021/nl2029688
  70. 10.1103/PhysRevB.85.205439
  71. 10.1103/PhysRevB.84.115450
  72. 10.1021/nl3005868
  73. 10.1063/1.2936088
  74. 10.1209/0295-5075/96/56007
  75. 10.1103/PhysRevLett.103.055502
  76. 10.1021/nl101836z
  77. 10.1103/PhysRevB.72.125418
  78. 10.1021/nl201359q
  79. 10.1063/1.3574366
  80. 10.1103/PhysRevLett.102.195901
  81. 10.1021/nl903268y
  82. 10.1103/PhysRevB.67.195311
  83. 10.1063/1.1465106
  84. 10.1016/S0375-9601(03)00055-0
  85. 10.1063/1.3054383
  86. 10.1115/1.4004429
  87. 10.1103/PhysRevB.85.195302
  88. 10.1103/PhysRevB.86.235304
  89. 10.1063/1.4792748
  90. 10.1063/1.1619221
  91. 10.1063/1.1631734
  92. 10.1063/1.3212737
  93. 10.1021/nl301971k
  94. 10.1063/1.4769443
  95. 10.1103/PhysRevB.72.174302
  96. 10.1021/nl202186y
  97. 10.1103/PhysRevB.61.3091
  98. 10.1103/PhysRevB.79.075316
  99. 10.1038/nature04796
  100. 10.1038/nnano.2006.140
  101. 10.1021/nl0506498
  102. 10.1063/1.2336720
  103. 10.1021/nl103718a
  104. 10.1103/PhysRevB.84.085442
  105. 10.1063/1.3637044
  106. 10.1021/nl300208c
  107. 10.1021/nl203356h
  108. 10.1021/nl302061f
  109. 10.1021/nl304619u
  110. 10.1103/PhysRevB.58.1544
  111. 10.1002/pssr.201206414
  112. 10.1002/pssr.201206393
  113. 10.1126/science.1225549
  114. 10.1021/nl304190s
  115. 10.1063/1.3699056
  116. 10.1038/nnano.2010.149
  117. 10.1063/1.4754513
  118. 10.1063/1.4705300
Dates
Type When
Created 12 years, 2 months ago (June 14, 2013, 3:29 a.m.)
Deposited 1 year, 11 months ago (Sept. 11, 2023, 6:58 p.m.)
Indexed 3 days, 19 hours ago (Aug. 22, 2025, 12:52 a.m.)
Issued 12 years, 2 months ago (June 14, 2013)
Published 12 years, 2 months ago (June 14, 2013)
Published Online 12 years, 2 months ago (June 14, 2013)
Published Print 11 years, 10 months ago (Oct. 1, 2013)
Funders 0

None

@article{Zhang_2013, title={Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering}, volume={7}, ISSN={1862-6270}, url={http://dx.doi.org/10.1002/pssr.201307188}, DOI={10.1002/pssr.201307188}, number={10}, journal={physica status solidi (RRL) – Rapid Research Letters}, publisher={Wiley}, author={Zhang, Gang and Zhang, Yong‐Wei}, year={2013}, month=jun, pages={754–766} }