Crossref journal-article
Wiley
physica status solidi (b) (311)
Abstract

AbstractDensity functional theory (DFT) is the most widely used technique in the realm of first‐principles electronic structure methods. Principally, this is because DFT in the Kohn–Sham (KS) formalism offers the appealing combination of relatively high accuracy and relatively low computational cost. Despite their great successes, traditional semilocal functionals fail to describe some important problems in solid state physics and materials science, the most conspicuous example being the notorious band gap problem. More sophisticated functionals providing greater accuracy without sacrificing computational efficiency are therefore needed. The Heyd–Scuseria–Ernzerhof (HSE) screened hybrid density functional [J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003); J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004)] successfully addresses some of the chief problems which plague semilocal functionals by including only the important parts of exact nonlocal Hartree–Fock‐type exchange. This work discusses some of the concepts underlying HSE and provides illustrative examples highlighting the successes of HSE in numerous solid state applications.

Bibliography

Henderson, T. M., Paier, J., & Scuseria, G. E. (2010). Accurate treatment of solids with the HSE screened hybrid. Physica Status Solidi (b), 248(4), 767–774. Portico.

Authors 3
  1. Thomas M. Henderson (first)
  2. Joachim Paier (additional)
  3. Gustavo E. Scuseria (additional)
References 89 Referenced 296
  1. 10.1063/1.2387954
  2. 10.1063/1.2403848
  3. 10.1103/PhysRevLett.100.146401
  4. 10.1103/PhysRevB.20.1504
  5. {'key': 'e_1_2_8_5_2', 'volume-title': 'Density Functional Theory of Atoms and Molecules', 'author': 'Parr R. G.', 'year': '1989'} / Density Functional Theory of Atoms and Molecules by Parr R. G. (1989)
  6. {'key': 'e_1_2_8_6_2', 'volume-title': 'Density Functional Theory', 'author': 'Dreizler R. M.', 'year': '1995'} / Density Functional Theory by Dreizler R. M. (1995)
  7. 10.1016/B978-044451719-7/50067-6
  8. 10.1103/PhysRev.90.317
  9. 10.1103/PhysRevA.14.36
  10. 10.1063/1.2194546
  11. 10.1063/1.1398093
  12. 10.1103/PhysRevA.64.042506
  13. 10.1063/1.1463444
  14. 10.1063/1.2345650
  15. 10.1063/1.2768351
  16. 10.1103/PhysRevA.80.052510
  17. 10.1103/PhysRevLett.77.3865
  18. 10.1103/PhysRevB.33.8800
  19. 10.1103/PhysRevB.54.16533
  20. 10.1103/PhysRevLett.91.146401
  21. 10.1103/PhysRevLett.100.136406
  22. 10.1103/PhysRevLett.103.026403
  23. 10.1103/PhysRevB.77.115123
  24. 10.1063/1.464304
  25. 10.1063/1.464913
  26. 10.1021/j100096a001
  27. 10.1063/1.472933
  28. 10.1063/1.478401
  29. 10.1063/1.478522
  30. 10.1103/PhysRevB.53.3764
  31. 10.1063/1.1564060
  32. 10.1063/1.1668634
  33. 10.1063/1.1760074
  34. 10.1063/1.2204597
  35. 10.1063/1.3185673
  36. 10.1002/qua.560560417
  37. 10.1016/S0009-2614(97)00758-6
  38. 10.1016/S1380-7323(96)80091-4
  39. 10.1039/B812838C
  40. 10.1080/00018737800101384
  41. 10.1063/1.2186996
  42. 10.1103/PhysRevB.18.7165
  43. 10.1103/PhysRevLett.51.1884
  44. 10.1103/PhysRevLett.51.1888
  45. 10.1007/BFb0016643
  46. 10.1142/9789812830586_0005 / Recent Advances in Density Functional Methods, Part I by Casida M. E. (1995)
  47. 10.1063/1.480443
  48. 10.1103/RevModPhys.74.601
  49. 10.1088/0034-4885/70/3/R02
  50. 10.1063/1.2953701
  51. 10.1063/1.2955460
  52. 10.1103/PhysRevB.78.121201
  53. 10.1103/PhysRevB.76.195440
  54. 10.1063/1.2187006
  55. 10.1103/PhysRevB.49.8024
  56. 10.1103/PhysRev.139.A796
  57. 10.1088/0953-8984/11/42/201
  58. 10.1103/PhysRevB.41.7868
  59. 10.1063/1.2085170
  60. 10.1103/PhysRevB.74.121102
  61. 10.1103/PhysRevB.74.195110
  62. 10.1103/PhysRevB.76.033101
  63. 10.1063/1.2206184
  64. 10.1103/PhysRevB.75.045121
  65. 10.1103/PhysRevLett.102.026101
  66. 10.1021/nl0509733
  67. 10.1021/nl0506352
  68. 10.1063/1.2150213
  69. 10.1021/jp0603839
  70. 10.1021/jp709931r
  71. 10.1103/PhysRevB.73.045432
  72. 10.1021/nl0617033
  73. 10.1103/PhysRevLett.98.206805 / Phys. Rev. Lett. by Hand M. Y. (2007)
  74. 10.1016/j.physe.2007.06.020
  75. 10.1103/PhysRevB.79.115126
  76. 10.1063/1.3074499
  77. 10.1103/PhysRevLett.103.096405
  78. 10.1063/1.2822021
  79. 10.1021/ct800149y
  80. 10.1063/1.477479
  81. 10.1063/1.1528936
  82. 10.1063/1.2784406
  83. 10.1063/1.2429058
  84. 10.1016/j.cplett.2007.04.020
  85. 10.1063/1.2795700
  86. 10.1063/1.2831556
  87. 10.1063/1.3247288
  88. 10.1063/1.2978377
  89. 10.1002/qua.22049
Dates
Type When
Created 14 years, 10 months ago (Oct. 20, 2010, 8:37 a.m.)
Deposited 1 year, 10 months ago (Oct. 8, 2023, 4:31 a.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 8:11 a.m.)
Issued 14 years, 10 months ago (Oct. 20, 2010)
Published 14 years, 10 months ago (Oct. 20, 2010)
Published Online 14 years, 10 months ago (Oct. 20, 2010)
Published Print 14 years, 4 months ago (April 1, 2011)
Funders 0

None

@article{Henderson_2010, title={Accurate treatment of solids with the HSE screened hybrid}, volume={248}, ISSN={1521-3951}, url={http://dx.doi.org/10.1002/pssb.201046303}, DOI={10.1002/pssb.201046303}, number={4}, journal={physica status solidi (b)}, publisher={Wiley}, author={Henderson, Thomas M. and Paier, Joachim and Scuseria, Gustavo E.}, year={2010}, month=oct, pages={767–774} }