Crossref journal-article
Wiley
physica status solidi (b) (311)
Abstract

AbstractLattice defects in semiconductors and wide‐gap materials which create deep levels in an open‐shell electronic configuration can give rise to so‐called defect bound small polarons. This type of defects present a challenge for electronic structure methods because the localization of the defect state and the associated energy levels depend sensitively on the ability of the total‐energy functional to satisfy the physical condition that the energy E(N) must be a piecewise linear function of the fractional electron number N. For practical applications the requirement of a linear E(N) is re‐cast as a generalized Koopmans condition. Since most functionals do not fulfill this condition accurately, we use parameterized perturbations that cancel the non‐linearity of E(N) and recover the correct Koopmans behavior. Starting from standard density functionals, we compare two types of parameterized perturbations, i.e., the addition of on‐site potentials and the mixing of non‐local Fock exchange in hybrid‐functionals. Surveying a range of acceptor‐type defects in II–VI and III–V semiconductors, we present a classification scheme that describes the relation between hole localization and the lattice relaxation of the polaronic state.

Bibliography

Lany, S. (2010). Predicting polaronic defect states by means of generalized Koopmans density functional calculations. Physica Status Solidi (b), 248(5), 1052–1060. Portico.

Authors 1
  1. Stephan Lany (first)
References 89 Referenced 67
  1. J. R.Woodyard U.S. Patent No. 2 530 110 (filed June 2 1944 awarded Nov. 14 1950).
  2. {'key': 'e_1_2_8_2_2', 'volume-title': 'Deep Centers in Semiconductors: A State of the Art Approach', 'author': 'Pantelides S. T.', 'year': '1986'} / Deep Centers in Semiconductors: A State of the Art Approach by Pantelides S. T. (1986)
  3. 10.1088/0953-8984/18/43/R01
  4. 10.1103/PhysRev.136.B864
  5. 10.1103/PhysRev.140.A1133
  6. 10.1088/0022-3719/5/13/012
  7. 10.1103/PhysRevLett.45.566
  8. 10.1103/PhysRevB.23.5048
  9. 10.1103/PhysRevB.37.785
  10. 10.1103/PhysRevB.45.13244
  11. 10.1103/PhysRevLett.77.3865
  12. 10.1098/rspa.1955.0183
  13. 10.1515/zna-1963-0106 / Z. Naturf. by Schneider J. (1963)
  14. 10.1103/PhysRevB.72.035203
  15. 10.1088/0022-3727/42/17/175411
  16. 10.1103/PhysRevB.48.7872
  17. 10.1103/PhysRevB.63.054102
  18. 10.1103/PhysRevLett.86.2834
  19. 10.1103/PhysRevB.80.085202
  20. 10.1103/PhysRevLett.103.016404
  21. 10.1103/PhysRevB.80.115217
  22. 10.1016/S0022-3697(97)00249-7
  23. 10.1063/1.1880972
  24. 10.1103/PhysRevB.80.195205
  25. 10.1039/B915578C
  26. 10.1103/PhysRevB.81.115311
  27. 10.1063/1.2354468
  28. 10.1103/PhysRevLett.98.137202
  29. 10.1103/PhysRevB.80.233102
  30. 10.1021/jp070200y
  31. 10.1103/PhysRevB.71.205210
  32. 10.1103/PhysRevB.78.140404
  33. 10.1103/PhysRev.96.1488
  34. 10.1103/PhysRev.97.869
  35. 10.1103/PhysRevB.71.155205
  36. 10.1103/PhysRevB.66.073202
  37. 10.1016/0038-1098(70)90608-3
  38. 10.1002/pssb.200301962
  39. 10.1063/1.464304
  40. 10.1063/1.472933
  41. 10.1063/1.1564060
  42. 10.1103/PhysRevLett.49.1691
  43. 10.1103/PhysRevA.76.040501
  44. 10.1103/PhysRevLett.100.146401
  45. {'key': 'e_1_2_8_45_2', 'volume-title': 'Quantum Theory of Molecules and Solids', 'author': 'Slater J. C.', 'year': '1974'} / Quantum Theory of Molecules and Solids by Slater J. C. (1974)
  46. 10.1103/PhysRevB.18.7165
  47. 10.1103/PhysRevLett.51.1884
  48. 10.1103/PhysRevLett.51.1888
  49. 10.1103/PhysRevB.78.235104
  50. 10.1016/S0031-8914(34)90011-2
  51. 10.1103/PhysRevB.16.2901
  52. 10.1103/PhysRevB.48.16929
  53. 10.1103/PhysRevB.57.1505
  54. 10.1088/0965-0393/17/8/084002
  55. 10.1103/PhysRevB.77.241201
  56. 10.1103/PhysRevB.81.113201
  57. 10.1088/0953-8984/19/25/255208
  58. 10.1103/PhysRevB.41.7868
  59. 10.1103/PhysRevB.59.7486
  60. 10.1016/j.tsf.2005.08.175
  61. 10.1103/PhysRevB.74.144432
  62. 10.1103/PhysRevB.75.045211
  63. 10.1103/PhysRevB.77.245202
  64. 10.1063/1.3274043
  65. 10.1103/PhysRevB.76.045217
  66. 10.1103/PhysRevB.79.201201
  67. 10.1103/PhysRevB.81.153203
  68. 10.1103/PhysRevB.81.205209
  69. 10.1063/1.3216464
  70. 10.1016/S0921-4526(01)00850-X
  71. A. T.Brant S.Yang S. M.Evans L. E.Halliburton andN. C.Giles Mater. Res. Soc. Fall meeting abstract H10.46 (2009).
  72. Due to the small DFA band gap the NOstate hybridizes with the conduction band whenλhs > 3 eV which prevents the accurate calculation ofE(N + 1). Therefore we determinedλhs = 4.3 eV by linear extrapolation of the differenceE(N + 1) − E(N) − eibetween 1 eV ≤ λhs ≤ 3 eV. Also since a minimum threshold exists forλhsto produce the correct wave‐function symmetry (see Fig. 5) we determined the non‐Koopmans energyΔnKfor DFA (see Table 1) by back‐extrapolation of the same linear function toλhs = 0.
  73. For the underlying DFA we used the gradient corrected exchange correlation potential of Ref. [11] and an on‐site Coulomb interaction [53] for Zn‐d withU = 6 eV see Ref. [49]. The conduction band edge was shifted to reflect the experimental band gap.
  74. 10.1002/1521-3951(200212)234:3<R7::AID-PSSB99997>3.0.CO;2-D / Phys. Status Solidi B by Zeuner A. (2002)
  75. 10.1007/s11664-006-0056-6
  76. 10.1016/j.jcrysgro.2008.03.044
  77. 10.1103/PhysRevB.77.125215
  78. 10.1103/PhysRevB.72.035215
  79. The fact that the C3v point group symmetry of the wurtzite lattice sites is already lower than the Td symmetry plays practically no role for the present discussion. Analogous effects are observed also in the zincblende modification of ZnO [20].
  80. 10.1103/PhysRevLett.93.156404
  81. 10.1063/1.2388256
  82. 10.1063/1.3383236
  83. {'key': 'e_1_2_8_83_2', 'first-page': '491', 'volume': '891', 'author': 'Meyer B. K.', 'year': '2006', 'journal-title': 'Mater. Res. Soc. Symp. Proc.'} / Mater. Res. Soc. Symp. Proc. by Meyer B. K. (2006)
  84. 10.1007/s00339-007-3962-4
  85. 10.1103/PhysRevLett.102.235501
  86. 10.1103/PhysRevB.65.085312
  87. 10.1016/j.physb.2007.08.179
  88. 10.1143/JJAP.31.L139
  89. 10.1002/pssb.2220940235
Dates
Type When
Created 14 years, 10 months ago (Sept. 24, 2010, 3:43 a.m.)
Deposited 1 year, 9 months ago (Oct. 31, 2023, 2:56 p.m.)
Indexed 6 hours, 19 minutes ago (Aug. 23, 2025, 9:22 p.m.)
Issued 14 years, 11 months ago (Sept. 24, 2010)
Published 14 years, 11 months ago (Sept. 24, 2010)
Published Online 14 years, 11 months ago (Sept. 24, 2010)
Published Print 14 years, 3 months ago (May 1, 2011)
Funders 0

None

@article{Lany_2010, title={Predicting polaronic defect states by means of generalized Koopmans density functional calculations}, volume={248}, ISSN={1521-3951}, url={http://dx.doi.org/10.1002/pssb.201046274}, DOI={10.1002/pssb.201046274}, number={5}, journal={physica status solidi (b)}, publisher={Wiley}, author={Lany, Stephan}, year={2010}, month=sep, pages={1052–1060} }