Abstract
AbstractLattice defects in semiconductors and wide‐gap materials which create deep levels in an open‐shell electronic configuration can give rise to so‐called defect bound small polarons. This type of defects present a challenge for electronic structure methods because the localization of the defect state and the associated energy levels depend sensitively on the ability of the total‐energy functional to satisfy the physical condition that the energy E(N) must be a piecewise linear function of the fractional electron number N. For practical applications the requirement of a linear E(N) is re‐cast as a generalized Koopmans condition. Since most functionals do not fulfill this condition accurately, we use parameterized perturbations that cancel the non‐linearity of E(N) and recover the correct Koopmans behavior. Starting from standard density functionals, we compare two types of parameterized perturbations, i.e., the addition of on‐site potentials and the mixing of non‐local Fock exchange in hybrid‐functionals. Surveying a range of acceptor‐type defects in II–VI and III–V semiconductors, we present a classification scheme that describes the relation between hole localization and the lattice relaxation of the polaronic state.
References
89
Referenced
67
- J. R.Woodyard U.S. Patent No. 2 530 110 (filed June 2 1944 awarded Nov. 14 1950).
{'key': 'e_1_2_8_2_2', 'volume-title': 'Deep Centers in Semiconductors: A State of the Art Approach', 'author': 'Pantelides S. T.', 'year': '1986'}
/ Deep Centers in Semiconductors: A State of the Art Approach by Pantelides S. T. (1986)10.1088/0953-8984/18/43/R01
10.1103/PhysRev.136.B864
10.1103/PhysRev.140.A1133
10.1088/0022-3719/5/13/012
10.1103/PhysRevLett.45.566
10.1103/PhysRevB.23.5048
10.1103/PhysRevB.37.785
10.1103/PhysRevB.45.13244
10.1103/PhysRevLett.77.3865
10.1098/rspa.1955.0183
10.1515/zna-1963-0106
/ Z. Naturf. by Schneider J. (1963)10.1103/PhysRevB.72.035203
10.1088/0022-3727/42/17/175411
10.1103/PhysRevB.48.7872
10.1103/PhysRevB.63.054102
10.1103/PhysRevLett.86.2834
10.1103/PhysRevB.80.085202
10.1103/PhysRevLett.103.016404
10.1103/PhysRevB.80.115217
10.1016/S0022-3697(97)00249-7
10.1063/1.1880972
10.1103/PhysRevB.80.195205
10.1039/B915578C
10.1103/PhysRevB.81.115311
10.1063/1.2354468
10.1103/PhysRevLett.98.137202
10.1103/PhysRevB.80.233102
10.1021/jp070200y
10.1103/PhysRevB.71.205210
10.1103/PhysRevB.78.140404
10.1103/PhysRev.96.1488
10.1103/PhysRev.97.869
10.1103/PhysRevB.71.155205
10.1103/PhysRevB.66.073202
10.1016/0038-1098(70)90608-3
10.1002/pssb.200301962
10.1063/1.464304
10.1063/1.472933
10.1063/1.1564060
10.1103/PhysRevLett.49.1691
10.1103/PhysRevA.76.040501
10.1103/PhysRevLett.100.146401
{'key': 'e_1_2_8_45_2', 'volume-title': 'Quantum Theory of Molecules and Solids', 'author': 'Slater J. C.', 'year': '1974'}
/ Quantum Theory of Molecules and Solids by Slater J. C. (1974)10.1103/PhysRevB.18.7165
10.1103/PhysRevLett.51.1884
10.1103/PhysRevLett.51.1888
10.1103/PhysRevB.78.235104
10.1016/S0031-8914(34)90011-2
10.1103/PhysRevB.16.2901
10.1103/PhysRevB.48.16929
10.1103/PhysRevB.57.1505
10.1088/0965-0393/17/8/084002
10.1103/PhysRevB.77.241201
10.1103/PhysRevB.81.113201
10.1088/0953-8984/19/25/255208
10.1103/PhysRevB.41.7868
10.1103/PhysRevB.59.7486
10.1016/j.tsf.2005.08.175
10.1103/PhysRevB.74.144432
10.1103/PhysRevB.75.045211
10.1103/PhysRevB.77.245202
10.1063/1.3274043
10.1103/PhysRevB.76.045217
10.1103/PhysRevB.79.201201
10.1103/PhysRevB.81.153203
10.1103/PhysRevB.81.205209
10.1063/1.3216464
10.1016/S0921-4526(01)00850-X
- A. T.Brant S.Yang S. M.Evans L. E.Halliburton andN. C.Giles Mater. Res. Soc. Fall meeting abstract H10.46 (2009).
- Due to the small DFA band gap the NOstate hybridizes with the conduction band whenλhs > 3 eV which prevents the accurate calculation ofE(N + 1). Therefore we determinedλhs = 4.3 eV by linear extrapolation of the differenceE(N + 1) − E(N) − eibetween 1 eV ≤ λhs ≤ 3 eV. Also since a minimum threshold exists forλhsto produce the correct wave‐function symmetry (see Fig. 5) we determined the non‐Koopmans energyΔnKfor DFA (see Table 1) by back‐extrapolation of the same linear function toλhs = 0.
- For the underlying DFA we used the gradient corrected exchange correlation potential of Ref. [11] and an on‐site Coulomb interaction [53] for Zn‐d withU = 6 eV see Ref. [49]. The conduction band edge was shifted to reflect the experimental band gap.
10.1002/1521-3951(200212)234:3<R7::AID-PSSB99997>3.0.CO;2-D
/ Phys. Status Solidi B by Zeuner A. (2002)10.1007/s11664-006-0056-6
10.1016/j.jcrysgro.2008.03.044
10.1103/PhysRevB.77.125215
10.1103/PhysRevB.72.035215
- The fact that the C3v point group symmetry of the wurtzite lattice sites is already lower than the Td symmetry plays practically no role for the present discussion. Analogous effects are observed also in the zincblende modification of ZnO [20].
10.1103/PhysRevLett.93.156404
10.1063/1.2388256
10.1063/1.3383236
{'key': 'e_1_2_8_83_2', 'first-page': '491', 'volume': '891', 'author': 'Meyer B. K.', 'year': '2006', 'journal-title': 'Mater. Res. Soc. Symp. Proc.'}
/ Mater. Res. Soc. Symp. Proc. by Meyer B. K. (2006)10.1007/s00339-007-3962-4
10.1103/PhysRevLett.102.235501
10.1103/PhysRevB.65.085312
10.1016/j.physb.2007.08.179
10.1143/JJAP.31.L139
10.1002/pssb.2220940235
Dates
Type | When |
---|---|
Created | 14 years, 10 months ago (Sept. 24, 2010, 3:43 a.m.) |
Deposited | 1 year, 9 months ago (Oct. 31, 2023, 2:56 p.m.) |
Indexed | 6 hours, 19 minutes ago (Aug. 23, 2025, 9:22 p.m.) |
Issued | 14 years, 11 months ago (Sept. 24, 2010) |
Published | 14 years, 11 months ago (Sept. 24, 2010) |
Published Online | 14 years, 11 months ago (Sept. 24, 2010) |
Published Print | 14 years, 3 months ago (May 1, 2011) |
@article{Lany_2010, title={Predicting polaronic defect states by means of generalized Koopmans density functional calculations}, volume={248}, ISSN={1521-3951}, url={http://dx.doi.org/10.1002/pssb.201046274}, DOI={10.1002/pssb.201046274}, number={5}, journal={physica status solidi (b)}, publisher={Wiley}, author={Lany, Stephan}, year={2010}, month=sep, pages={1052–1060} }