Crossref journal-article
Wiley
Proteins: Structure, Function, and Bioinformatics (311)
Abstract

AbstractWe describe the adaptation of the Rosetta de novo structure prediction method for prediction of helical transmembrane protein structures. The membrane environment is modeled by embedding the protein chain into a model membrane represented by parallel planes defining hydrophobic, interface, and polar membrane layers for each energy evaluation. The optimal embedding is determined by maximizing the exposure of surface hydrophobic residues within the membrane and minimizing hydrophobic exposure outside of the membrane. Protein conformations are built up using the Rosetta fragment assembly method and evaluated using a new membrane‐specific version of the Rosetta low‐resolution energy function in which residue–residue and residue–environment interactions are functions of the membrane layer in addition to amino acid identity, distance, and density. We find that lower energy and more native‐like structures are achieved by sequential addition of helices to a growing chain, which may mimic some aspects of helical protein biogenesis after translocation, rather than folding the whole chain simultaneously as in the Rosetta soluble protein prediction method. In tests on 12 membrane proteins for which the structure is known, between 51 and 145 residues were predicted with root‐mean‐square deviation <4 Å from the native structure. Proteins 2006. © 2005 Wiley‐Liss, Inc.

Bibliography

Yarov‐Yarovoy, V., Schonbrun, J., & Baker, D. (2005). Multipass membrane protein structure prediction using Rosetta. Proteins: Structure, Function, and Bioinformatics, 62(4), 1010–1025. Portico.

Authors 3
  1. Vladimir Yarov‐Yarovoy (first)
  2. Jack Schonbrun (additional)
  3. David Baker (additional)
References 72 Referenced 296
  1. 10.1038/nrd892
  2. 10.1002/pro.5560070420
  3. 10.1002/(SICI)1097-0134(199708)28:4<465::AID-PROT1>3.0.CO;2-9
  4. 10.1110/ps.10101
  5. WhiteSH.http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html.
  6. 10.1093/nar/28.1.235
  7. 10.1002/prot.10552
  8. {'key': 'e_1_2_6_9_2', 'article-title': 'Free modeling with Rosetta in CASP6', 'author': 'Bradley P', 'journal-title': 'Proteins'} / Proteins / Free modeling with Rosetta in CASP6 by Bradley P
  9. 10.1126/science.1113801
  10. 10.1126/science.2667138
  11. 10.1002/prot.20334
  12. 10.1006/jmbi.1999.3257
  13. 10.1002/prot.20456
  14. 10.1016/S0006-3495(02)75613-0
  15. 10.1016/S0006-3495(99)77009-8
  16. 10.1002/1097-0134(20000815)40:3<429::AID-PROT80>3.0.CO;2-2
  17. 10.1110/ps.03505804
  18. 10.1006/jmbi.2001.4908
  19. 10.1002/prot.10071
  20. 10.1038/72440
  21. 10.1073/pnas.98.3.880
  22. 10.1038/72430 / Nat Struct Biol / Interhelical hydrogen bonding drives strong interactions in membrane proteins by Zhou FX (2000)
  23. 10.1073/pnas.041593698
  24. 10.1016/S0076-6879(04)83004-0
  25. 10.1006/jmbi.1997.0959
  26. 10.1002/(SICI)1097-0134(19990101)34:1<82::AID-PROT7>3.0.CO;2-A
  27. 10.1146/annurev.biophys.28.1.319
  28. 10.1002/prot.10021
  29. 10.1006/jmbi.1999.3091
  30. MeilerJ. JUFO3D: Secondary structure prediction for proteins from low resolution tertiary structure.http://www.jens‐meiler.de/.2003.
  31. 10.1006/jmbi.2000.4315
  32. {'key': 'e_1_2_6_33_2', 'first-page': '175', 'article-title': 'A hidden Markov model for predicting transmembrane helices in protein sequences', 'volume': '6', 'author': 'Sonnhammer EL', 'year': '1998', 'journal-title': 'Proc Int Conf Intell Syst Mol Biol'} / Proc Int Conf Intell Syst Mol Biol / A hidden Markov model for predicting transmembrane helices in protein sequences by Sonnhammer EL (1998)
  33. {'key': 'e_1_2_6_34_2', 'first-page': '166', 'article-title': 'TMbase—a database of membrane spanning proteins segments', 'volume': '374', 'author': 'Hofmann K', 'year': '1993', 'journal-title': 'Biol Chem Hoppe Seyler'} / Biol Chem Hoppe Seyler / TMbase—a database of membrane spanning proteins segments by Hofmann K (1993)
  34. 10.1093/bioinformatics/16.4.404
  35. 10.1006/jmbi.1998.2107
  36. 10.1093/bioinformatics/17.9.849
  37. 10.1093/bioinformatics/bth340
  38. 10.1016/S0005-2736(01)00299-1
  39. 10.1021/bi980809c
  40. 10.1093/protein/5.3.213
  41. 10.1073/pnas.97.11.5796
  42. 10.1016/j.jmb.2004.02.001
  43. 10.1529/biophysj.104.049288
  44. 10.1016/S0014-5793(98)00095-7
  45. 10.1021/bi00176a037
  46. 10.1016/S0022-2836(02)00698-8
  47. 10.1093/nar/gkg571
  48. 10.1126/science.277.5332.1676
  49. 10.1093/bioinformatics/14.10.846
  50. 10.1006/jmbi.1998.2221
  51. 10.1038/nature02218
  52. 10.1021/bi048368m
  53. 10.1146/annurev.biochem.69.1.881
  54. 10.1074/jbc.273.15.9312
  55. 10.1002/prot.340180309
  56. 10.1002/prot.1102
  57. 10.1002/prot.10229
  58. 10.1016/S0022-2836(02)00590-9
  59. 10.1016/S0022-2836(03)00521-7
  60. 10.1002/prot.10304
  61. 10.1038/4922
  62. 10.1002/prot.20195
  63. 10.1002/med.1019
  64. 10.1002/prot.20229
  65. 10.1002/(SICI)1097-0134(1997)1 <185::AID-PROT24>3.0.CO;2-J
  66. 10.1002/prot.1171
  67. 10.1006/jmbi.1997.1240
  68. 10.1073/pnas.182552199
  69. 10.1529/biophysj.104.046417
  70. 10.1093/protein/gzi013
  71. 10.1126/science.289.5480.733
  72. 10.1126/science.289.5480.739
Dates
Type When
Created 19 years, 8 months ago (Dec. 21, 2005, 7:46 p.m.)
Deposited 1 year, 10 months ago (Oct. 15, 2023, 5:31 p.m.)
Indexed 1 month, 1 week ago (July 28, 2025, 2:43 a.m.)
Issued 19 years, 8 months ago (Dec. 21, 2005)
Published 19 years, 8 months ago (Dec. 21, 2005)
Published Online 19 years, 8 months ago (Dec. 21, 2005)
Published Print 19 years, 6 months ago (March 1, 2006)
Funders 0

None

@article{Yarov_Yarovoy_2005, title={Multipass membrane protein structure prediction using Rosetta}, volume={62}, ISSN={1097-0134}, url={http://dx.doi.org/10.1002/prot.20817}, DOI={10.1002/prot.20817}, number={4}, journal={Proteins: Structure, Function, and Bioinformatics}, publisher={Wiley}, author={Yarov‐Yarovoy, Vladimir and Schonbrun, Jack and Baker, David}, year={2005}, month=dec, pages={1010–1025} }