Abstract
AbstractWe describe the adaptation of the Rosetta de novo structure prediction method for prediction of helical transmembrane protein structures. The membrane environment is modeled by embedding the protein chain into a model membrane represented by parallel planes defining hydrophobic, interface, and polar membrane layers for each energy evaluation. The optimal embedding is determined by maximizing the exposure of surface hydrophobic residues within the membrane and minimizing hydrophobic exposure outside of the membrane. Protein conformations are built up using the Rosetta fragment assembly method and evaluated using a new membrane‐specific version of the Rosetta low‐resolution energy function in which residue–residue and residue–environment interactions are functions of the membrane layer in addition to amino acid identity, distance, and density. We find that lower energy and more native‐like structures are achieved by sequential addition of helices to a growing chain, which may mimic some aspects of helical protein biogenesis after translocation, rather than folding the whole chain simultaneously as in the Rosetta soluble protein prediction method. In tests on 12 membrane proteins for which the structure is known, between 51 and 145 residues were predicted with root‐mean‐square deviation <4 Å from the native structure. Proteins 2006. © 2005 Wiley‐Liss, Inc.
References
72
Referenced
296
10.1038/nrd892
10.1002/pro.5560070420
10.1002/(SICI)1097-0134(199708)28:4<465::AID-PROT1>3.0.CO;2-9
10.1110/ps.10101
- WhiteSH.http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html.
10.1093/nar/28.1.235
10.1002/prot.10552
{'key': 'e_1_2_6_9_2', 'article-title': 'Free modeling with Rosetta in CASP6', 'author': 'Bradley P', 'journal-title': 'Proteins'}
/ Proteins / Free modeling with Rosetta in CASP6 by Bradley P10.1126/science.1113801
10.1126/science.2667138
10.1002/prot.20334
10.1006/jmbi.1999.3257
10.1002/prot.20456
10.1016/S0006-3495(02)75613-0
10.1016/S0006-3495(99)77009-8
10.1002/1097-0134(20000815)40:3<429::AID-PROT80>3.0.CO;2-2
10.1110/ps.03505804
10.1006/jmbi.2001.4908
10.1002/prot.10071
10.1038/72440
10.1073/pnas.98.3.880
10.1038/72430
/ Nat Struct Biol / Interhelical hydrogen bonding drives strong interactions in membrane proteins by Zhou FX (2000)10.1073/pnas.041593698
10.1016/S0076-6879(04)83004-0
10.1006/jmbi.1997.0959
10.1002/(SICI)1097-0134(19990101)34:1<82::AID-PROT7>3.0.CO;2-A
10.1146/annurev.biophys.28.1.319
10.1002/prot.10021
10.1006/jmbi.1999.3091
- MeilerJ. JUFO3D: Secondary structure prediction for proteins from low resolution tertiary structure.http://www.jens‐meiler.de/.2003.
10.1006/jmbi.2000.4315
{'key': 'e_1_2_6_33_2', 'first-page': '175', 'article-title': 'A hidden Markov model for predicting transmembrane helices in protein sequences', 'volume': '6', 'author': 'Sonnhammer EL', 'year': '1998', 'journal-title': 'Proc Int Conf Intell Syst Mol Biol'}
/ Proc Int Conf Intell Syst Mol Biol / A hidden Markov model for predicting transmembrane helices in protein sequences by Sonnhammer EL (1998){'key': 'e_1_2_6_34_2', 'first-page': '166', 'article-title': 'TMbase—a database of membrane spanning proteins segments', 'volume': '374', 'author': 'Hofmann K', 'year': '1993', 'journal-title': 'Biol Chem Hoppe Seyler'}
/ Biol Chem Hoppe Seyler / TMbase—a database of membrane spanning proteins segments by Hofmann K (1993)10.1093/bioinformatics/16.4.404
10.1006/jmbi.1998.2107
10.1093/bioinformatics/17.9.849
10.1093/bioinformatics/bth340
10.1016/S0005-2736(01)00299-1
10.1021/bi980809c
10.1093/protein/5.3.213
10.1073/pnas.97.11.5796
10.1016/j.jmb.2004.02.001
10.1529/biophysj.104.049288
10.1016/S0014-5793(98)00095-7
10.1021/bi00176a037
10.1016/S0022-2836(02)00698-8
10.1093/nar/gkg571
10.1126/science.277.5332.1676
10.1093/bioinformatics/14.10.846
10.1006/jmbi.1998.2221
10.1038/nature02218
10.1021/bi048368m
10.1146/annurev.biochem.69.1.881
10.1074/jbc.273.15.9312
10.1002/prot.340180309
10.1002/prot.1102
10.1002/prot.10229
10.1016/S0022-2836(02)00590-9
10.1016/S0022-2836(03)00521-7
10.1002/prot.10304
10.1038/4922
10.1002/prot.20195
10.1002/med.1019
10.1002/prot.20229
10.1002/(SICI)1097-0134(1997)1 <185::AID-PROT24>3.0.CO;2-J
10.1002/prot.1171
10.1006/jmbi.1997.1240
10.1073/pnas.182552199
10.1529/biophysj.104.046417
10.1093/protein/gzi013
10.1126/science.289.5480.733
10.1126/science.289.5480.739
Dates
Type | When |
---|---|
Created | 19 years, 8 months ago (Dec. 21, 2005, 7:46 p.m.) |
Deposited | 1 year, 10 months ago (Oct. 15, 2023, 5:31 p.m.) |
Indexed | 1 month, 1 week ago (July 28, 2025, 2:43 a.m.) |
Issued | 19 years, 8 months ago (Dec. 21, 2005) |
Published | 19 years, 8 months ago (Dec. 21, 2005) |
Published Online | 19 years, 8 months ago (Dec. 21, 2005) |
Published Print | 19 years, 6 months ago (March 1, 2006) |
@article{Yarov_Yarovoy_2005, title={Multipass membrane protein structure prediction using Rosetta}, volume={62}, ISSN={1097-0134}, url={http://dx.doi.org/10.1002/prot.20817}, DOI={10.1002/prot.20817}, number={4}, journal={Proteins: Structure, Function, and Bioinformatics}, publisher={Wiley}, author={Yarov‐Yarovoy, Vladimir and Schonbrun, Jack and Baker, David}, year={2005}, month=dec, pages={1010–1025} }