Crossref journal-article
Wiley
Proteins: Structure, Function, and Bioinformatics (311)
Abstract

AbstractThe ionization properties of Lys and Glu residues buried in the hydrophobic core of staphylococcal nuclease (SN) suggest that the interior of this protein behaves as a highly polarizable medium with an apparent dielectric constant near 10. This has been rationalized previously in terms of localized conformational relaxation concomitant with the ionization of the internal residue, and with contributions by internal water molecules. Paradoxically, the crystal structure of the SN V66E variant shows internal water molecules and the structure of the V66K variant does not. To assess the structural and dynamical character of interior water molecules in SN, a series of 10‐ns‐long molecular dynamics (MD) simulations was performed with wild‐type SN, and with the V66E and V66K variants with Glu66 and Lys66 in the neutral form. Internal water molecules were identified based on their coordination state and characterized in terms of their residence times, average location, dipole moment fluctuations, hydrogen bonding interactions, and interaction energies. The locations of the water molecules that have residence times of several nanoseconds and display small mean‐square displacements agree well with the locations of crystallographically observed water molecules. Additional, relatively disordered water molecules that are not observed crystallographically were found in internal hydrophobic locations. All of the interior water molecules that were analyzed in detail displayed a distribution of interaction energies with higher mean value and narrower width than a bulk water molecule. This underscores the importance of protein dynamics for hydration of the protein interior. Further analysis of the MD trajectories revealed that the fluctuations in the protein structure (especially the loop elements) can strongly influence protein hydration by changing the patterns or strengths of hydrogen bonding interactions between water molecules and the protein. To investigate the dynamical response of the protein to burial of charged groups in the protein interior, MD simulations were performed with Glu66 and Lys66 in the charged state. Overall, the MD simulations suggest that a conformational change rather than internal water molecules is the dominant determinant of the high apparent polarizability of the protein interior. Proteins 2005. © 2005 Wiley‐Liss, Inc.

Bibliography

Damjanović, A., García‐Moreno, B., Lattman, E. E., & García, A. E. (2005). Molecular dynamics study of water penetration in staphylococcal nuclease. Proteins: Structure, Function, and Bioinformatics, 60(3), 433–449. Portico.

Authors 4
  1. Ana Damjanović (first)
  2. Bertrand García‐Moreno (additional)
  3. Eaton E. Lattman (additional)
  4. Angel E. García (additional)
References 62 Referenced 73
  1. 10.1016/0022-2836(72)90210-0
  2. 10.1021/bi00745a021
  3. 10.1073/pnas.72.9.3290
  4. 10.1038/304654a0
  5. 10.1002/pro.5560011203
  6. 10.1002/pro.5560030808
  7. 10.1006/jmbi.2001.4482
  8. 10.1110/ps.9.3.497
  9. 10.1021/bi00166a011
  10. 10.1021/bi00068a012
  11. 10.1006/jmbi.1997.1365
  12. 10.1073/pnas.022387699
  13. 10.1073/pnas.0304180101
  14. 10.1073/pnas.96.26.14848
  15. 10.1073/pnas.212637899
  16. 10.1073/pnas.161282698
  17. 10.1002/prot.10377
  18. 10.1073/pnas.94.6.2133
  19. 10.1002/(SICI)1097-0134(199801)30:1<100::AID-PROT9>3.0.CO;2-S
  20. 10.1006/jmbi.1999.3027
  21. 10.1038/376660a0
  22. 10.1016/S0006-3495(00)76763-4
  23. 10.1073/pnas.0308315101
  24. 10.1126/science.1948083
  25. 10.1006/jmbi.1994.0055
  26. 10.1021/bi00028a013
  27. 10.1006/jmbi.1998.2490
  28. 10.1006/jmbi.2001.4895
  29. 10.1002/bip.360310802
  30. 10.1016/S0006-3495(95)79955-6
  31. 10.1006/jmbi.1995.0397
  32. 10.1016/S0006-3495(96)79267-6
  33. 10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F
  34. 10.1002/(SICI)1097-0134(20000215)38:3<261::AID-PROT3>3.0.CO;2-Q
  35. 10.1016/S0006-3495(00)76533-7
  36. 10.1002/1097-0134(20010401)43:1<65::AID-PROT1018>3.0.CO;2-F
  37. 10.1021/jp0120920
  38. 10.1006/jmbi.2001.4860
  39. 10.1126/science.1067778
  40. 10.1006/jmbi.2001.5202
  41. 10.1021/ja0377908
  42. 10.1016/j.jmb.2004.02.039
  43. 10.1021/ja049701c
  44. 10.1016/0022-2836(91)80195-Z
  45. 10.1016/S0301-4622(96)02238-7
  46. 10.1016/S0006-3495(00)76411-3
  47. 10.1016/j.jmb.2004.05.066
  48. 10.1529/biophysj.104.048454
  49. 10.1016/S0006-3495(02)75670-1
  50. 10.1002/prot.1106
  51. 10.1110/ps.4700102
  52. 10.1006/jcph.1999.6201
  53. 10.1016/0263-7855(96)00018-5
  54. 10.1021/jp973084f
  55. 10.1063/1.470648
  56. 10.1016/0010-4655(95)00041-D
  57. 10.1021/ja00124a002
  58. 10.1063/1.448118
  59. 10.1038/35102535
  60. 10.1021/jp982873
  61. 10.1002/prot.340100203
  62. 10.1002/jcc.540141116
Dates
Type When
Created 20 years, 2 months ago (June 21, 2005, 12:52 p.m.)
Deposited 1 year, 10 months ago (Oct. 15, 2023, 11:20 p.m.)
Indexed 3 months ago (June 3, 2025, 3:08 a.m.)
Issued 20 years, 2 months ago (June 21, 2005)
Published 20 years, 2 months ago (June 21, 2005)
Published Online 20 years, 2 months ago (June 21, 2005)
Published Print 20 years ago (Aug. 15, 2005)
Funders 0

None

@article{Damjanovi__2005, title={Molecular dynamics study of water penetration in staphylococcal nuclease}, volume={60}, ISSN={1097-0134}, url={http://dx.doi.org/10.1002/prot.20486}, DOI={10.1002/prot.20486}, number={3}, journal={Proteins: Structure, Function, and Bioinformatics}, publisher={Wiley}, author={Damjanović, Ana and García‐Moreno, Bertrand and Lattman, Eaton E. and García, Angel E.}, year={2005}, month=jun, pages={433–449} }