Crossref journal-article
Wiley
Proteins: Structure, Function, and Bioinformatics (311)
Abstract

AbstractThe protein‐inhibitor binding energies of enzymes are often pH dependent, and binding induces either proton uptake or proton release. The proton uptake/release and the binding energy for three complexes with available experimental data were numerically studied: pepstatin–cathepsin D, pepstatin–plasmepsin II and pepstatin–endothiapepsin. Very good agreement with the experimental data was achieved when conformational changes were taken into account. The role of the desolvation energy and the conformational changes was revealed by modeling the complex, the separated molecules in the complex conformation and the free molecules. It was shown that the conformational changes induced by the complex formation are as important for the proton transfer as the loss of solvation energy caused by the burial of interface residues. The residues responsible for the proton transfer were identified and their contribution to the proton uptake/release calculated. These residues were found to be scattered along the whole protein rather than being localized only at the active site. In the case of cathepsin D, these residues were found to be highly conserved among the cathepsin D sequences of other species. It was shown that conformation and ionization changes induced by the complex formation are critical for the correct calculation of the binding energy. Taking into account the electrostatics and the van der Waals (vdW) energies within the Boltzmann distribution of energies and allowing ionization and conformation changes to occur makes the calculated binding energy more realistic and closer to the experimental value. The interplay between electrostatic and vdW forces makes the pH dependence of the binding energy smoother, because the vdW force acts in reaction to the changes of the electrostatic energy. It was found that a small fraction of the ionizable groups remain uncharged in both the free and complexed molecules. The sequence and structural position of these groups aligns well within the three proteases, suggesting that these may have specific role. Proteins 2004;55:000–000. © 2004 Wiley‐Liss, Inc.

Bibliography

Alexov, E. (2004). Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein–inhibitor association: Application to plasmepsin, cathepsin D and endothiapepsin–pepstatin complexes. Proteins: Structure, Function, and Bioinformatics, 56(3), 572–584. Portico.

Authors 1
  1. Emil Alexov (first)
References 71 Referenced 41
  1. 10.1021/cr960387h
  2. 10.1073/pnas.93.1.13
  3. 10.1016/S0959-440X(00)00065-8
  4. 10.1021/jp003602d
  5. 10.1002/(SICI)1097-0134(19990801)36:2<147::AID-PROT2>3.0.CO;2-3
  6. 10.1016/S0022-2836(03)00036-6
  7. 10.1002/(SICI)1097-0134(199702)27:2<184::AID-PROT4>3.0.CO;2-G
  8. 10.1016/0301-4622(96)00021-X
  9. 10.1110/ps.8.1.180
  10. {'key': 'e_1_2_5_11_2', 'series-title': 'The Enzymes', 'author': 'Boyer P', 'year': '1971'} / The Enzymes by Boyer P (1971)
  11. 10.1021/bi971550l
  12. 10.1006/jmbi.1995.0501
  13. 10.1021/ac00217a002
  14. 10.1073/pnas.96.18.10118
  15. 10.1002/prot.10174
  16. 10.1016/S0006-3495(99)76868-2
  17. {'key': 'e_1_2_5_18_2', 'first-page': '282', 'article-title': 'The role of hydrophobic microenvironment in modulating pK\n \n a\n shifts in proteins', 'volume': '48', 'author': 'Mehler E', 'year': '2002', 'journal-title': 'Prot'} / Prot / The role of hydrophobic microenvironment in modulating pK a shifts in proteins by Mehler E (2002)
  18. 10.1021/ja01577a001
  19. 10.1073/pnas.96.20.11145
  20. 10.1021/bi00496a010
  21. 10.1002/prot.340150304
  22. 10.1006/jmbi.1994.1301
  23. 10.1093/protein/12.8.657
  24. 10.1002/(SICI)1097-0134(19981101)33:2<145::AID-PROT1>3.0.CO;2-I
  25. 10.1021/jp010949n
  26. 10.1002/prot.10027
  27. 10.1016/S0006-3495(95)80042-1
  28. 10.1021/jp9623709
  29. 10.1016/S0006-3495(97)78851-9
  30. 10.1016/S0006-3495(02)73940-4
  31. {'key': 'e_1_2_5_32_2', 'article-title': 'The determinants of carboxyl pK\n \n a\n values in turkey ovomucoid third domain', 'author': 'Li H', 'year': '2003', 'journal-title': 'Prot'} / Prot / The determinants of carboxyl pK a values in turkey ovomucoid third domain by Li H (2003)
  32. 10.1021/bi00514a028
  33. 10.1017/S0033583500005333
  34. 10.1021/jp960111d
  35. 10.1021/jp011214l
  36. 10.1016/S0006-3495(02)73904-0
  37. 10.1006/jmbi.1993.1294
  38. 10.1110/ps.0229903
  39. 10.1002/(SICI)1096-987X(19961115)17:14<1633::AID-JCC5>3.0.CO;2-M
  40. 10.1002/prot.10265
  41. 10.1002/(SICI)1097-0134(199702)27:2<195::AID-PROT5>3.0.CO;2-F
  42. 10.1006/jmbi.1998.1747
  43. 10.1110/ps.40001
  44. 10.1016/S0022-2836(02)00030-X
  45. {'key': 'e_1_2_5_46_2', 'first-page': '92', 'article-title': 'Structure, energetics, and dynamics of lipid‐protein interactions: a molecular dynamics study of the gramacidin A channel in a DMPC bilayer', 'volume': '24', 'author': 'Woolf T', 'year': '1996', 'journal-title': 'Prot'} / Prot / Structure, energetics, and dynamics of lipid‐protein interactions: a molecular dynamics study of the gramacidin A channel in a DMPC bilayer by Woolf T (1996)
  46. 10.1016/S1097-2765(01)00426-9
  47. 10.1074/jbc.M101784200
  48. 10.1110/ps.8.7.1381
  49. 10.1002/(SICI)1097-0134(19980301)30:4<407::AID-PROT8>3.0.CO;2-F
  50. 10.1002/(SICI)1097-0134(20000601)39:4<393::AID-PROT120>3.0.CO;2-H
  51. 10.1073/pnas.90.14.6796
  52. 10.1038/2306
  53. 10.1073/pnas.93.19.10034
  54. {'key': 'e_1_2_5_55_2', 'first-page': '32', 'article-title': 'Crystal structure of the novel aspartic proteinase zymogen proplasmepsin II from Plasmodium falciparum', 'volume': '32', 'author': 'Bernstein N', 'year': '1999', 'journal-title': 'Nat Struct Biol'} / Nat Struct Biol / Crystal structure of the novel aspartic proteinase zymogen proplasmepsin II from Plasmodium falciparum by Bernstein N (1999)
  55. 10.1016/0014-5793(84)81085-6
  56. {'key': 'e_1_2_5_57_2', 'volume-title': 'Accelrys Insight II', 'year': '1990'} / Accelrys Insight II (1990)
  57. 10.1002/jcc.540040211
  58. 10.1021/j100058a043
  59. 10.1002/jcc.1161
  60. 10.1021/jp010454y
  61. 10.1021/bi982700a
  62. 10.1046/j.1432-1033.2003.03917.x
  63. 10.1002/prot.340110407
  64. 10.1016/S0076-6879(03)74021-X
  65. 10.1093/nar/25.17.3389
  66. 10.1016/j.jmb.2003.10.025
  67. 10.1002/9780470122891.ch1
  68. 10.1021/bi961268z
  69. 10.1021/ja00102a057
  70. 10.1002/bip.1975.360140509
  71. 10.1016/S0022-2836(03)00610-7
Dates
Type When
Created 21 years, 4 months ago (April 2, 2004, 4:01 p.m.)
Deposited 1 year, 10 months ago (Oct. 16, 2023, 12:30 a.m.)
Indexed 1 year, 1 month ago (June 26, 2024, 10:30 a.m.)
Issued 21 years, 4 months ago (April 2, 2004)
Published 21 years, 4 months ago (April 2, 2004)
Published Online 21 years, 4 months ago (April 2, 2004)
Published Print 21 years ago (Aug. 15, 2004)
Funders 0

None

@article{Alexov_2004, title={Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein–inhibitor association: Application to plasmepsin, cathepsin D and endothiapepsin–pepstatin complexes}, volume={56}, ISSN={1097-0134}, url={http://dx.doi.org/10.1002/prot.20107}, DOI={10.1002/prot.20107}, number={3}, journal={Proteins: Structure, Function, and Bioinformatics}, publisher={Wiley}, author={Alexov, Emil}, year={2004}, month=apr, pages={572–584} }