Crossref journal-article
Wiley
Protein Science (311)
Abstract

AbstractMolecular dynamics (MD) simulation is a well‐established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low‐resolution information in the form of residue–residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact‐based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One‐third of the restrained simulations folded to the native state within a few tens of microseconds—a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near‐native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near‐native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred.

Bibliography

Raval, A., Piana, S., Eastwood, M. P., & Shaw, D. E. (2015). Assessment of the utility of contact‐based restraints in accelerating the prediction of protein structure using molecular dynamics simulations. Protein Science, 25(1), 19–29. Portico.

Authors 4
  1. Alpan Raval (first)
  2. Stefano Piana (additional)
  3. Michael P. Eastwood (additional)
  4. David E. Shaw (additional)
References 62 Referenced 28
  1. 10.1038/267585a0
  2. 10.1016/j.sbi.2012.11.002
  3. 10.1016/j.sbi.2011.12.001
  4. 10.1002/prot.22501
  5. 10.1016/S0006-3495(03)74551-2
  6. 10.1073/pnas.0811363106
  7. 10.1038/nmeth.3213
  8. 10.1073/pnas.0502655102
  9. 10.1126/science.1113801
  10. 10.1016/j.str.2006.11.010
  11. 10.1110/ps.062416606
  12. 10.1021/jp212541y
  13. 10.1002/prot.24336
  14. 10.1002/prot.21345
  15. 10.1006/jmbi.2001.5032
  16. 10.1073/pnas.0810818105
  17. 10.1126/science.282.5389.740
  18. 10.1016/S0022-2836(02)00997-X
  19. 10.1038/nature01160
  20. 10.1016/j.jmb.2009.07.063
  21. 10.1016/j.bpj.2009.02.033
  22. 10.1038/nphys1713
  23. 10.1371/journal.pone.0018868
  24. 10.1002/prot.24098
  25. 10.1002/prot.24367
  26. 10.1093/protein/6.6.605
  27. 10.1371/journal.pbio.1001244
  28. 10.1111/febs.12078
  29. 10.1002/cphc.200400617
  30. 10.1074/mcp.M114.040824
  31. 10.1006/jmrb.1995.1004
  32. 10.1023/A:1020435630054
  33. 10.1073/pnas.2434121100
  34. 10.1021/ja016880e
  35. 10.1023/A:1026744431105
  36. 10.1073/pnas.0610313104
  37. 10.1039/b801810c
  38. 10.1371/journal.pone.0028766
  39. 10.1093/bioinformatics/btr638
  40. 10.1038/nbt.2419
  41. 10.1093/bioinformatics/btt211
  42. 10.1073/pnas.1218321110
  43. 10.1016/j.bpj.2011.03.051
  44. 10.1073/pnas.89.6.2017
  45. 10.1021/bi00078a034
  46. 10.1038/nsb0296-193
  47. 10.1021/bi000792
  48. 10.1002/prot.24452
  49. Maestro version 9.8 (2014) Schrödinger LLC New York. Available at:http://www.schrodinger.com/citations/41/12/1/
  50. 10.1021/ja9812610
  51. 10.1371/journal.pcbi.1000584
  52. 10.1016/S0009-2614(99)01123-9
  53. 10.1021/jp973084f
  54. 10.1002/jcc.20065
  55. 10.1209/0295-5075/19/6/002
  56. 10.1063/1.462133
  57. {'key': 'e_1_2_6_58_1', 'volume-title': 'Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06)', 'author': 'Bowers KJ', 'year': '2006'} / Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06) by Bowers KJ (2006)
  58. {'key': 'e_1_2_6_59_1', 'volume-title': 'Millisecond‐scale molecular dynamics simulations on Anton. Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (SC09)', 'author': 'Shaw DE', 'year': '2009'} / Millisecond‐scale molecular dynamics simulations on Anton. Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (SC09) by Shaw DE (2009)
  59. 10.1126/science.1187409
  60. 10.1103/PhysRevE.76.016703
  61. 10.1098/rspa.2011.0514
  62. 10.1093/nar/gkh429
Dates
Type When
Created 10 years ago (Aug. 12, 2015, 7:25 p.m.)
Deposited 1 year, 11 months ago (Sept. 13, 2023, 3:42 p.m.)
Indexed 1 year, 1 month ago (July 9, 2024, 4:31 a.m.)
Issued 10 years ago (Aug. 30, 2015)
Published 10 years ago (Aug. 30, 2015)
Published Online 10 years ago (Aug. 30, 2015)
Published Print 9 years, 8 months ago (Jan. 1, 2016)
Funders 0

None

@article{Raval_2015, title={Assessment of the utility of contact‐based restraints in accelerating the prediction of protein structure using molecular dynamics simulations}, volume={25}, ISSN={1469-896X}, url={http://dx.doi.org/10.1002/pro.2770}, DOI={10.1002/pro.2770}, number={1}, journal={Protein Science}, publisher={Wiley}, author={Raval, Alpan and Piana, Stefano and Eastwood, Michael P. and Shaw, David E.}, year={2015}, month=aug, pages={19–29} }