Abstract
AbstractCurrently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free‐energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography‐based restraints into the MD protocol. Because these restraints are aimed at the ensemble‐average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native‐like fashion as dictated by the original force field. To validate this approach, we have used the data from solid‐state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well‐established model protein, ubiquitin. The ensemble‐restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid‐state chemical shifts, and backbone order parameters. The predictions for 15N relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high‐resolution crystallographic data can be viewed as protein‐specific empirical corrections to the standard force fields.
References
99
Referenced
22
10.1002/prot.24098
10.1021/ja003150i
10.1110/ps.03381404
10.1126/science.1208351
10.1006/jmbi.2001.5032
10.1002/prot.21345
10.1073/pnas.0810818105
10.1002/prot.22538
10.1002/prot.23131
10.1021/jp910674d
10.1002/jcc.20065
10.1021/jp901540t
10.1002/anie.201001898
10.1023/A:1008379605403
10.1529/biophysj.104.056101
10.1021/jp105813j
10.1021/ja100645k
10.1021/jz3016233
10.1016/S1090-7807(03)00253-2
10.1021/ja030546w
10.1021/ja062443u
10.1021/ja078039s
10.1021/ja100726a
10.1021/ja303591y
10.1002/pro.584
10.1371/journal.pcbi.1000911
10.1006/jmbi.2001.4891
10.1093/acprof:oso/9780199550654.001.0001
10.1073/pnas.1218321110
10.1002/prot.21123
10.1002/prot.22711
10.1002/prot.22102
10.1021/bi025571d
10.1021/bi800894u
10.1107/S0907444909052925
10.1107/S0907444902010284
10.1107/S0907444905007894
10.1007/s10858-011-9478-4
10.1021/ja030547o
10.1021/ja00097a084
10.1007/s10858-013-9787-x
10.1016/0022-2836(87)90679-6
10.1021/ja200461n
10.1002/prot.10035
10.1016/j.str.2004.02.031
10.1063/1.1587119
10.1016/j.bpj.2010.01.051
10.1002/prot.10299
10.1073/pnas.032522499
10.1021/ja300265w
10.1021/jz9001345
10.1007/s10858-012-9609-6
10.1007/s10858-012-9668-8
10.1021/ja907067j
10.1021/ja9708676
10.1126/science.1157092
10.1021/ja206442c
10.1110/ps.041139505
10.1016/j.jmb.2011.06.044
10.1002/(SICI)1097-0134(199710)29:2<153::AID-PROT3>3.0.CO;2-E
10.1016/S0006-3495(02)75203-X
10.1073/pnas.0701204104
{'key': 'e_1_2_6_64_1', 'first-page': '24', 'article-title': 'atomic displacement parameters (ADPs), their parameterization and refinement in PHENIX', 'volume': '1', 'author': 'Afonine PV', 'year': '2010', 'journal-title': 'Comput Crystallogr Newsletter'}
/ Comput Crystallogr Newsletter / atomic displacement parameters (ADPs), their parameterization and refinement in PHENIX by Afonine PV (2010)10.1107/S0907444911028320
10.1007/s002490100152
10.1007/s00249-009-0427-z
10.1021/bi00124a006
10.1073/pnas.201404398
10.1107/S0907444902011277
10.1007/s10858-005-1718-z
10.1021/bi020084j
10.1021/ja073234s
10.1371/journal.pcbi.1002035
10.1002/prot.340080411
10.1007/BF00178343
10.1021/ja0386804
10.1038/nature06232
10.1038/nature03199
10.1021/ja904716h
10.1021/ja907974m
10.1016/j.str.2010.04.016
10.1021/ja906995x
10.1016/j.bbamem.2011.07.048
10.1002/prot.340100407
10.1002/ijch.199400022
10.1126/science.2396108
10.1107/S0907444993009515
10.1002/(SICI)1097-0134(199712)29:4<426::AID-PROT3>3.0.CO;2-6
10.1016/j.str.2007.06.019
10.7554/eLife.00311
10.1006/jmbi.1998.1808
10.1002/prot.20491
10.1002/prot.21507
10.1016/S0022-2836(05)80135-4
10.1023/A:1023812930288
10.1016/j.pnmrs.2004.08.003
10.1110/ps.0233303
10.1007/s10858-005-2601-7
10.1002/prot.20251
Dates
Type | When |
---|---|
Created | 11 years, 7 months ago (Jan. 22, 2014, 1:03 p.m.) |
Deposited | 1 year, 11 months ago (Sept. 15, 2023, 2:21 p.m.) |
Indexed | 4 weeks ago (July 25, 2025, 6:40 a.m.) |
Issued | 11 years, 5 months ago (March 22, 2014) |
Published | 11 years, 5 months ago (March 22, 2014) |
Published Online | 11 years, 5 months ago (March 22, 2014) |
Published Print | 11 years, 4 months ago (April 1, 2014) |
@article{Xue_2014, title={Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics}, volume={23}, ISSN={1469-896X}, url={http://dx.doi.org/10.1002/pro.2433}, DOI={10.1002/pro.2433}, number={4}, journal={Protein Science}, publisher={Wiley}, author={Xue, Yi and Skrynnikov, Nikolai R.}, year={2014}, month=mar, pages={488–507} }