Crossref journal-article
Wiley
Journal of Polymer Science Part B: Polymer Physics (311)
Abstract

AbstractWe discuss a phenomenological, coarse‐grained simulation scheme, single‐chain‐in‐mean‐field (SCMF) simulation, for investigating the kinetics of phase separation in dense polymer blends and mixtures of polymers and solvents. In the spirit of self‐consistent‐field calculations, we approximate the interacting multichain problem by that of a single chain in an external field, which, in turn, depends on the local densities of the components. To study the time evolution of the mixture, we perform an explicit Monte Carlo (MC) simulation of an ensemble of independent chains in the external field and periodically calculate the average densities and update the external field. Unlike dynamic self‐consistent‐field theory, these SCMF simulations do not assume that the chain conformations relax much more quickly than the density and incorporate the single‐chain dynamics explicitly rather than via an Onsager coefficient. This allows us to study systems with large spatial inhomogeneities and dynamic asymmetries. To assess the accuracy and limitations of the simulation scheme, we compare the results of SCMF simulations using a discretized Edwards Hamiltonian with computer simulations of the corresponding multichain system for (1) the early stages of spinodal decomposition of a symmetric binary polymer blend in response to a quench from χN = 0.314 to χN = 5 (where χ is the Flory–Huggins parameter and N is the number of segments), for which the growth rate of composition fluctuations is compared with MC simulations of the bond fluctuation model and alternative dynamic self‐consistent‐field calculations, and (2) the evaporation of a solvent from a low‐molecular‐weight thin polymer film, for which a comparison is made with molecular dynamics (MD) simulations of a bead‐necklace model with a monomeric solvent. In the latter case, the polymer conformations are extracted from MD simulations and modeled in the SCMF simulations by a discretized Edwards Hamiltonian augmented by a chain‐bending potential. From the MD simulations of thin polymer films in equilibrium with its vapor, phase coexistence has been determined, and the second‐ and third‐order virial coefficients in the SCMF simulations have been adjusted accordingly. Finally, MD simulations of bulk solutions of a polymer and a solvent over a range of compositions, as well as the pure solvent at various densities, have been performed to determine self‐diffusion coefficients that enter the SCMF simulations in the form of density‐dependent segmental mobilities. A comparison of the polymer and solvent profiles in a thin film as a function of time and the fraction of the solvent evaporating from a solvent‐swollen film, as obtained from MD simulations and parameterized SCMF simulations, shows satisfactory agreement for this simple mapping procedure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 934–958, 2005

Bibliography

Müller, M., & Smith, G. D. (2005). Phase separation in binary mixtures containing polymers: A quantitative comparison of single‐chain‐in‐mean‐field simulations and computer simulations of the corresponding multichain systems. Journal of Polymer Science Part B: Polymer Physics, 43(8), 934–958. Portico.

Authors 2
  1. Marcus Müller (first)
  2. Grant D. Smith (additional)
References 102 Referenced 152
  1. 10.1021/ma60075a033
  2. 10.1016/B978-0-12-546802-2.50012-9
  3. {'volume-title': 'Polymer Blends and Alloys', 'year': '1993', 'author': 'Folbes M. J.', 'key': 'e_1_2_9_3_3'} / Polymer Blends and Alloys by Folbes M. J. (1993)
  4. 10.1146/annurev.fluid.34.082301.144051
  5. 10.1088/0957-4484/14/10/201
  6. 10.1103/PhysRevA.20.595
  7. 10.1103/PhysRevA.31.1103
  8. {'key': 'e_1_2_9_6_2', 'series-title': 'In Encyclopedia of Physical Chemistry and Chemical Physics', 'first-page': '2087', 'author': 'Müller M.', 'year': '2001'} / In Encyclopedia of Physical Chemistry and Chemical Physics by Müller M. (2001)
  9. 10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
  10. 10.1557/mrs2001.43
  11. {'key': 'e_1_2_9_6_5', 'first-page': '407', 'volume-title': 'Coarse‐Graining Techniques in Simulation Methods for Polymers', 'author': 'Binder K.', 'year': '2004'} / Coarse‐Graining Techniques in Simulation Methods for Polymers by Binder K. (2004)
  12. 10.1002/polb.10456
  13. 10.1063/1.1516591
  14. 10.1063/1.1497636
  15. 10.1063/1.465536
  16. 10.1063/1.473129
  17. 10.1063/1.474313
  18. 10.1103/PhysRevE.56.3240
  19. 10.1021/ma981648n
  20. 10.1021/ma961618p
  21. 10.1021/ma010346
  22. 10.1103/PhysRevE.64.041804
  23. 10.1063/1.1565105
  24. 10.1103/RevModPhys.49.435
  25. 10.1063/1.439809
  26. 10.1063/1.442226
  27. 10.1063/1.445747
  28. 10.1016/0378-4371(87)90158-0
  29. 10.1103/PhysRevE.49.3199
  30. 10.1021/ma951102q
  31. 10.1021/ma951071z
  32. 10.1063/1.1557052
  33. 10.1063/1.1677735
  34. 10.1063/1.430517
  35. 10.1021/ma50004a051
  36. 10.1103/PhysRevLett.72.2660
  37. 10.1021/ma011515t
  38. An accurate description of liquid–vapor interfaces in polymeric systems requires an accurate equation of state and a nonlocal interaction free‐energy functional that duly separates short‐range repulsions and weaker longer‐range attractions.27
  39. 10.1063/1.1535893
  40. 10.1088/0953-8984/15/19/201
  41. 10.1021/ma991796t
  42. 10.1063/1.1776555
  43. 10.1063/1.1505025
  44. 10.1021/ma960411t
  45. 10.1063/1.1597454
  46. 10.1063/1.1601214
  47. 10.1088/0953-8984/13/21/303
  48. If we are only interested in the equilibrium value more efficient schemes to update the fields can be used that speed up the convergence of the procedure.
  49. 10.1016/0032-3950(65)90209-1
  50. 10.1063/1.431268
  51. {'volume-title': 'The Theory of Polymer Dynamics', 'year': '1986', 'author': 'Doi M.', 'key': 'e_1_2_9_37_2'} / The Theory of Polymer Dynamics by Doi M. (1986)
  52. 10.1140/epje/i2002-10122-1
  53. 10.1063/1.1744102
  54. 10.1063/1.1730447
  55. 10.1016/0001-6160(70)90144-6
  56. 10.1007/BFb0017984
  57. 10.1002/(SICI)1521-3919(19990701)8:4<343::AID-MATS343>3.0.CO;2-F
  58. 10.1103/PhysRevE.59.728
  59. 10.1063/1.1750930
  60. 10.1063/1.1750971
  61. 10.1021/ma00187a030
  62. 10.1063/1.459901
  63. 10.1021/ma00110a016
  64. 10.1021/ma00181a028
  65. 10.1051/jp2:1991138
  66. 10.1021/ma001500f
  67. 10.1209/epl/i2000-00452-6
  68. 10.1063/1.1699180
  69. {'volume-title': 'The Theory of Polymer Dynamics', 'year': '1994', 'author': 'Doi M.', 'key': 'e_1_2_9_48_3'} / The Theory of Polymer Dynamics by Doi M. (1994)
  70. 10.1088/0370-1328/85/4/301
  71. 10.1021/ma001440d
  72. 10.1021/ma981311l
  73. 10.1140/epje/e2004-00014-7
  74. 10.1021/ma971349i
  75. 10.1021/ma9714070
  76. 10.1021/ma9910639
  77. 10.1021/ma011889m
  78. 10.1002/adma.200304906
  79. 10.1209/epl/i2002-00206-0
  80. 10.1016/j.polymer.2004.01.082
  81. 10.1016/j.polymer.2004.04.044
  82. 10.1063/1.1397333
  83. Lucretius: A Molecular Simulation Package.http://www.che.utah.edu/∼gdsmith/mdcode/main.html.
  84. 10.1006/jcph.1993.1045
  85. 10.1063/1.1765103
  86. 10.1016/S0010-4655(02)00309-0
  87. 10.1080/00268979600100761
  88. 10.1103/PhysRevE.65.030802
  89. The coexistence densities in the SCMF simulations only agree with the equilibrium SCF values in the limit of an infinitely large ensemble of single chains. If the ensemble consists only of a small number of independent chains the fluctuations of the densities and fields will give rise to corrections and will also impart a dependence of the results on the spatial discretization.
  90. 10.1063/1.343754
  91. 10.1007/s10189-002-8214-1
  92. 10.1021/ma049509v
  93. 10.1002/1521-4095(20020805)14:15<1041::AID-ADMA1041>3.0.CO;2-A
  94. 10.1021/ma011672s
  95. 10.1021/ma010854j
  96. 10.1021/ma001291z
  97. 10.1021/ma9902100
  98. 10.1016/j.cossms.2004.01.002
  99. 10.1002/polb.20055
  100. 10.1063/1.1511512
  101. 10.1063/1.1511513
  102. 10.1063/1.1463056
Dates
Type When
Created 20 years, 5 months ago (March 8, 2005, 4:46 p.m.)
Deposited 1 year, 11 months ago (Sept. 11, 2023, 8:59 a.m.)
Indexed 2 months ago (June 24, 2025, 9:25 a.m.)
Issued 20 years, 5 months ago (March 8, 2005)
Published 20 years, 5 months ago (March 8, 2005)
Published Online 20 years, 5 months ago (March 8, 2005)
Published Print 20 years, 4 months ago (April 15, 2005)
Funders 3
  1. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards2
    1. Mu1674/3
    2. Mu1674/1
  2. Alexander von Humboldt Foundation 10.13039/100005156 Alexander von Humboldt-Stiftung

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels5
    1. Humboldt-Stiftung
    2. Humboldt Foundation
    3. Alexander von Humboldt Foundation
    4. Humboldt Stiftung
    5. AvH
  3. National Science Foundation for their support through the CRC project “Multiply Bound Polymer Chains”

@article{M_ller_2005, title={Phase separation in binary mixtures containing polymers: A quantitative comparison of single‐chain‐in‐mean‐field simulations and computer simulations of the corresponding multichain systems}, volume={43}, ISSN={1099-0488}, url={http://dx.doi.org/10.1002/polb.20385}, DOI={10.1002/polb.20385}, number={8}, journal={Journal of Polymer Science Part B: Polymer Physics}, publisher={Wiley}, author={Müller, Marcus and Smith, Grant D.}, year={2005}, month=mar, pages={934–958} }