Abstract
AbstractThe radial basis function (RBF) collocation method uses global shape functions to interpolate and collocate the approximate solution of PDEs. It is a truly meshless method as compared to some of the so‐called meshless or element‐free finite element methods. For the multiquadric and Gaussian RBFs, there are two ways to make the solution converge—either by refining the mesh size h, or by increasing the shape parameter c. While the h‐scheme requires the increase of computational cost, the c‐scheme is performed without extra effort. In this paper we establish by numerical experiment the exponential error estimate ϵ ∼ O(λ√c̄h) where 0 < λ < 1. We also propose the use of residual error as an error indicator to optimize the selection of c. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 571–594, 2003
References
67
Referenced
299
10.1002/nme.1620370205
10.1007/BF00364252
10.1016/S0045-7825(96)01087-0
10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
10.1007/s004660050346
10.1002/nme.1620381005
10.1016/0898-1221(90)90270-T
- E.Trefftz Ein genenstück zum Ritz'schen verfahren Proc 2nd Int Cong Appl Mech Zürich 1926 pp.131–137.
10.1007/978-1-4899-2877-1_11
10.1137/0714043
10.1023/A:1018981221740
10.1016/S0955-7997(02)00081-4
- E.LarssonandB.Fornberg A numerical study of some radial basis function based solution methods for elliptic PDEs submitted to Comput Math Appl (2002).
10.1137/0722040
10.1016/S0898-1221(00)00071-7
10.1016/S0898-1221(01)00295-4
10.1007/BF02432002
10.1016/0021-9045(92)90058-V
{'key': 'e_1_2_1_20_2', 'first-page': '1', 'volume-title': 'Trends in approximation theory', 'author': 'Wendland H.', 'year': '2001'}
/ Trends in approximation theory by Wendland H. (2001)10.1016/0898-1221(92)90175-H
10.1137/0718033
10.1007/BF01398256
10.1137/1036141
10.1007/BF02123482
10.1007/BF03177517
10.1090/S0025-5718-00-01251-5
10.1093/imanum/5.3.319
{'key': 'e_1_2_1_29_2', 'volume-title': 'An introduction to numerical analysis', 'author': 'Atkinson K. E.', 'year': '1989'}
/ An introduction to numerical analysis by Atkinson K. E. (1989)10.1016/0955-7997(94)90024-8
{'key': 'e_1_2_1_31_2', 'volume-title': 'Multivariate approximation and applications', 'author': 'Schaback R.', 'year': '2000'}
/ Multivariate approximation and applications by Schaback R. (2000)10.1016/S0955-7997(01)00011-X
10.1080/01614947408079627
10.1016/0009-2509(75)80031-5
{'key': 'e_1_2_1_35_2', 'volume-title': 'Chebyshev and Fourier spectral methods', 'author': 'Boyd J. P.', 'year': '2001'}
/ Chebyshev and Fourier spectral methods by Boyd J. P. (2001)10.1007/978-3-642-84108-8
10.1108/eb023913
10.1006/acha.1996.0001
10.1093/oso/9780198534396.003.0003
/ wavelets, subdivision algorithms, and radial basis functions / Advances in numerical analysis by Powell M. J. D. (1992)10.1090/S0025-5718-99-01009-1
{'key': 'e_1_2_1_41_2', 'series-title': 'Constructive theory of functions of several variables, Lecture notes in mathematics', 'first-page': '85', 'author': 'Duchon J.', 'year': '1977'}
/ Constructive theory of functions of several variables, Lecture notes in mathematics by Duchon J. (1977)10.1029/JB076i008p01905
10.1016/0898-1221(90)90272-L
10.2307/2007474
10.1007/BF01893414
10.1016/0955-7997(95)00062-3
10.1002/num.10033
10.1016/S0096-3003(97)10104-7
{'key': 'e_1_2_1_49_2', 'first-page': '131', 'volume-title': 'Surface fitting and multiresolution methods', 'author': 'Fasshauer G. E.', 'year': '1997'}
/ Surface fitting and multiresolution methods by Fasshauer G. E. (1997)10.1016/S0096-3003(96)00309-8
10.1061/(ASCE)0733-9429(1999)125:5(524)
{'key': 'e_1_2_1_52_2', 'first-page': '1398', 'article-title': 'An efficient mesh‐free scheme for solving multi‐layer three‐dimensional hydrodynamics model', 'volume': '2', 'author': 'Wong S. M.', 'year': '2000', 'journal-title': 'Adv Comput Eng Sci'}
/ Adv Comput Eng Sci / An efficient mesh‐free scheme for solving multi‐layer three‐dimensional hydrodynamics model by Wong S. M. (2000)10.1016/S0168-9274(01)00053-8
10.1109/72.165588
- M. J. L.Orr Introduction to radial basis function networks http://www.anc.ed.ac.uk/_mjo/papers/intro.ps 1996.
10.1016/0898-1221(92)90166-F
10.1016/0898-1221(92)90174-G
10.1137/0907043
10.1137/S1064827599361771
- B.FornbergandG.Wright Stable computation of multiquadric interpolants for all values of the shape parameter submitted to SIAM J Sci Comput (2001).
10.1016/0898-1221(91)90123-L
10.1023/A:1018975909870
10.1137/0715049
10.1080/104077901460650
10.1016/0955-7997(94)90061-2
{'key': 'e_1_2_1_66_2', 'first-page': '73', 'volume-title': 'Computational engineering with boundary elements', 'author': 'Hsiao G. C.', 'year': '1990'}
/ Computational engineering with boundary elements by Hsiao G. C. (1990)10.1016/S0898-1221(01)00297-8
10.1023/A:1016609007255
Dates
Type | When |
---|---|
Created | 22 years, 2 months ago (May 23, 2003, 6:02 a.m.) |
Deposited | 1 year, 9 months ago (Nov. 17, 2023, 9:11 p.m.) |
Indexed | 21 hours, 58 minutes ago (Aug. 20, 2025, 8:57 a.m.) |
Issued | 22 years, 3 months ago (April 22, 2003) |
Published | 22 years, 3 months ago (April 22, 2003) |
Published Online | 22 years, 3 months ago (April 22, 2003) |
Published Print | 21 years, 11 months ago (Sept. 1, 2003) |
@article{Cheng_2003, title={Exponential convergence and H‐c multiquadric collocation method for partial differential equations}, volume={19}, ISSN={1098-2426}, url={http://dx.doi.org/10.1002/num.10062}, DOI={10.1002/num.10062}, number={5}, journal={Numerical Methods for Partial Differential Equations}, publisher={Wiley}, author={Cheng, A. H.‐D. and Golberg, M. A. and Kansa, E. J. and Zammito, G.}, year={2003}, month=apr, pages={571–594} }