Crossref journal-article
Wiley
Numerical Methods for Partial Differential Equations (311)
Abstract

AbstractThe radial basis function (RBF) collocation method uses global shape functions to interpolate and collocate the approximate solution of PDEs. It is a truly meshless method as compared to some of the so‐called meshless or element‐free finite element methods. For the multiquadric and Gaussian RBFs, there are two ways to make the solution converge—either by refining the mesh size h, or by increasing the shape parameter c. While the h‐scheme requires the increase of computational cost, the c‐scheme is performed without extra effort. In this paper we establish by numerical experiment the exponential error estimate ϵ ∼ O(λ√c̄h) where 0 < λ < 1. We also propose the use of residual error as an error indicator to optimize the selection of c. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 571–594, 2003

Bibliography

Cheng, A. H. ‐D., Golberg, M. A., Kansa, E. J., & Zammito, G. (2003). Exponential convergence and H‐c multiquadric collocation method for partial differential equations. Numerical Methods for Partial Differential Equations, 19(5), 571–594. Portico.

Authors 4
  1. A. H.‐D. Cheng (first)
  2. M. A. Golberg (additional)
  3. E. J. Kansa (additional)
  4. G. Zammito (additional)
References 67 Referenced 299
  1. 10.1002/nme.1620370205
  2. 10.1007/BF00364252
  3. 10.1016/S0045-7825(96)01087-0
  4. 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
  5. 10.1007/s004660050346
  6. 10.1002/nme.1620381005
  7. 10.1016/0898-1221(90)90270-T
  8. E.Trefftz Ein genenstück zum Ritz'schen verfahren Proc 2nd Int Cong Appl Mech Zürich 1926 pp.131–137.
  9. 10.1007/978-1-4899-2877-1_11
  10. 10.1137/0714043
  11. 10.1023/A:1018981221740
  12. 10.1016/S0955-7997(02)00081-4
  13. E.LarssonandB.Fornberg A numerical study of some radial basis function based solution methods for elliptic PDEs submitted to Comput Math Appl (2002).
  14. 10.1137/0722040
  15. 10.1016/S0898-1221(00)00071-7
  16. 10.1016/S0898-1221(01)00295-4
  17. 10.1007/BF02432002
  18. 10.1016/0021-9045(92)90058-V
  19. {'key': 'e_1_2_1_20_2', 'first-page': '1', 'volume-title': 'Trends in approximation theory', 'author': 'Wendland H.', 'year': '2001'} / Trends in approximation theory by Wendland H. (2001)
  20. 10.1016/0898-1221(92)90175-H
  21. 10.1137/0718033
  22. 10.1007/BF01398256
  23. 10.1137/1036141
  24. 10.1007/BF02123482
  25. 10.1007/BF03177517
  26. 10.1090/S0025-5718-00-01251-5
  27. 10.1093/imanum/5.3.319
  28. {'key': 'e_1_2_1_29_2', 'volume-title': 'An introduction to numerical analysis', 'author': 'Atkinson K. E.', 'year': '1989'} / An introduction to numerical analysis by Atkinson K. E. (1989)
  29. 10.1016/0955-7997(94)90024-8
  30. {'key': 'e_1_2_1_31_2', 'volume-title': 'Multivariate approximation and applications', 'author': 'Schaback R.', 'year': '2000'} / Multivariate approximation and applications by Schaback R. (2000)
  31. 10.1016/S0955-7997(01)00011-X
  32. 10.1080/01614947408079627
  33. 10.1016/0009-2509(75)80031-5
  34. {'key': 'e_1_2_1_35_2', 'volume-title': 'Chebyshev and Fourier spectral methods', 'author': 'Boyd J. P.', 'year': '2001'} / Chebyshev and Fourier spectral methods by Boyd J. P. (2001)
  35. 10.1007/978-3-642-84108-8
  36. 10.1108/eb023913
  37. 10.1006/acha.1996.0001
  38. 10.1093/oso/9780198534396.003.0003 / wavelets, subdivision algorithms, and radial basis functions / Advances in numerical analysis by Powell M. J. D. (1992)
  39. 10.1090/S0025-5718-99-01009-1
  40. {'key': 'e_1_2_1_41_2', 'series-title': 'Constructive theory of functions of several variables, Lecture notes in mathematics', 'first-page': '85', 'author': 'Duchon J.', 'year': '1977'} / Constructive theory of functions of several variables, Lecture notes in mathematics by Duchon J. (1977)
  41. 10.1029/JB076i008p01905
  42. 10.1016/0898-1221(90)90272-L
  43. 10.2307/2007474
  44. 10.1007/BF01893414
  45. 10.1016/0955-7997(95)00062-3
  46. 10.1002/num.10033
  47. 10.1016/S0096-3003(97)10104-7
  48. {'key': 'e_1_2_1_49_2', 'first-page': '131', 'volume-title': 'Surface fitting and multiresolution methods', 'author': 'Fasshauer G. E.', 'year': '1997'} / Surface fitting and multiresolution methods by Fasshauer G. E. (1997)
  49. 10.1016/S0096-3003(96)00309-8
  50. 10.1061/(ASCE)0733-9429(1999)125:5(524)
  51. {'key': 'e_1_2_1_52_2', 'first-page': '1398', 'article-title': 'An efficient mesh‐free scheme for solving multi‐layer three‐dimensional hydrodynamics model', 'volume': '2', 'author': 'Wong S. M.', 'year': '2000', 'journal-title': 'Adv Comput Eng Sci'} / Adv Comput Eng Sci / An efficient mesh‐free scheme for solving multi‐layer three‐dimensional hydrodynamics model by Wong S. M. (2000)
  52. 10.1016/S0168-9274(01)00053-8
  53. 10.1109/72.165588
  54. M. J. L.Orr Introduction to radial basis function networks http://www.anc.ed.ac.uk/_mjo/papers/intro.ps 1996.
  55. 10.1016/0898-1221(92)90166-F
  56. 10.1016/0898-1221(92)90174-G
  57. 10.1137/0907043
  58. 10.1137/S1064827599361771
  59. B.FornbergandG.Wright Stable computation of multiquadric interpolants for all values of the shape parameter submitted to SIAM J Sci Comput (2001).
  60. 10.1016/0898-1221(91)90123-L
  61. 10.1023/A:1018975909870
  62. 10.1137/0715049
  63. 10.1080/104077901460650
  64. 10.1016/0955-7997(94)90061-2
  65. {'key': 'e_1_2_1_66_2', 'first-page': '73', 'volume-title': 'Computational engineering with boundary elements', 'author': 'Hsiao G. C.', 'year': '1990'} / Computational engineering with boundary elements by Hsiao G. C. (1990)
  66. 10.1016/S0898-1221(01)00297-8
  67. 10.1023/A:1016609007255
Dates
Type When
Created 22 years, 2 months ago (May 23, 2003, 6:02 a.m.)
Deposited 1 year, 9 months ago (Nov. 17, 2023, 9:11 p.m.)
Indexed 21 hours, 58 minutes ago (Aug. 20, 2025, 8:57 a.m.)
Issued 22 years, 3 months ago (April 22, 2003)
Published 22 years, 3 months ago (April 22, 2003)
Published Online 22 years, 3 months ago (April 22, 2003)
Published Print 21 years, 11 months ago (Sept. 1, 2003)
Funders 0

None

@article{Cheng_2003, title={Exponential convergence and H‐c multiquadric collocation method for partial differential equations}, volume={19}, ISSN={1098-2426}, url={http://dx.doi.org/10.1002/num.10062}, DOI={10.1002/num.10062}, number={5}, journal={Numerical Methods for Partial Differential Equations}, publisher={Wiley}, author={Cheng, A. H.‐D. and Golberg, M. A. and Kansa, E. J. and Zammito, G.}, year={2003}, month=apr, pages={571–594} }