Crossref journal-article
Wiley
Journal of Neurobiology (311)
Abstract

AbstractThe induction of long‐term potentiation (LTP) is generally assumed to be triggered by Ca2+ entry into dendritic spines via NMDA receptor‐gated channels. A previous computational model proposed that spines serve several functions in this process. First, they compartmentalize and amplify increases in [Ca2+]i. Second, they augment the nonlinear relationship between synaptic strength and the probability or magnitude of LTP induction. Third, they isolate the metabolic machinery responsible for LTP induction from increases in [Ca2+]i produced by voltage‐gated Ca2+ channels in the dendritic shaft. Here we examine this last prediction of the model using methods that combine confocal microscopy with simultaneous neurophysiological recordings in hippocampal brain slices. Either of two Ca2+‐sensitive dyes were injected into CA1 pyramidal neurons. Direct depolarization of the neurons via the somatic electrode produced clear increases in Ca2+ signals within the dendritic spines, a result that was not predicted by the previous spine model. Our new spine model suggests that some of this signal could theoretically result from Ca2+‐bound dye diffusing from the dendritic shaft into the spine. Dye diffusion alone cannot, however, explain the numerous cases in which the Ca2+ signal in the spine was considerably larger than that in the adjacent dendritic shaft. The latter observations raise the possiblity of voltage‐gated Ca2+ entry directly into the spine or else perhaps via Ca2+‐dependent Ca2+release. The new spine model accommodates these observations as well as several other recent experimental results. 1994 John Wiley & Sons, Inc.

Bibliography

Jaffe, D. B., Fisher, S. A., & Brown, T. H. (1994). Confocal laser scanning microscopy reveals voltage‐gated calcium signals within hippocampal dendritic spines. Journal of Neurobiology, 25(3), 220–233. Portico.

Authors 3
  1. David B. Jaffe (first)
  2. Stephen A. Fisher (additional)
  3. Thomas H. Brown (additional)
References 34 Referenced 60
  1. 10.1038/363347a0
  2. 10.1523/JNEUROSCI.02-01-00032.1982
  3. 10.1016/S0006-3495(90)82494-2
  4. 10.1038/361031a0
  5. 10.1126/science.2903551
  6. 10.1016/B978-0-12-148955-7.50018-7 / Neural Models of Plasticity by Brown T. H. (1989)
  7. 10.1146/annurev.ne.13.030190.002355
  8. {'key': 'e_1_2_1_9_1', 'first-page': '346', 'volume-title': 'The Synaptic Organization of the Brain', 'author': 'Brown T. H.', 'year': '1990'} / The Synaptic Organization of the Brain by Brown T. H. (1990)
  9. 10.1016/0165-0270(92)90086-S
  10. 10.1038/320461a0
  11. 10.1523/JNEUROSCI.07-03-00774.1987 / J. Neurosci. / Long‐term synapic potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials by Gustafsson B. (1987)
  12. 10.1038/354076a0
  13. 10.1523/JNEUROSCI.09-08-02982.1989 / J. Neurosci. / Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics by Harris K. M. (1980)
  14. 10.1152/jn.1990.63.5.1148 / J. Neurophysiol. / Insights into associative long‐term potentiation from computational models of NMDA receptor‐mediated calcium influx and intracellular calcium concentration changes by Holmes W. R. (1990)
  15. Jaffe D. B.andBrown T. H.(1994). Confocal imaging of dendritic Ca2+transients in hippocampal brain slices during simultaneous current‐ and voltage‐clamp recordings.Microscopy Rsrch. and Tech.(in press). (10.1002/jemt.1070290404)
  16. Jaffe D. B. Ross W. N. Lissman J. E. Lasser‐Ross N. Miakawa H. andJohnston D.(1994). Model for dendritic Ca2+accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements.J. Neurophysiol.(in press). (10.1152/jn.1994.71.3.1065)
  17. 10.1073/pnas.88.21.9883
  18. 10.1146/annurev.ph.54.030192.002421
  19. 10.1016/0361-9230(88)90149-9
  20. 10.1126/science.3952501
  21. 10.1073/pnas.83.14.5326
  22. 10.1073/pnas.86.23.9574
  23. 10.1016/0896-6273(91)90370-F
  24. 10.1038/320529a0
  25. 10.1016/0896-6273(92)90074-N
  26. 10.1038/354073a0
  27. 10.1016/0896-6273(88)90193-6
  28. 10.1016/0959-4388(93)90130-Q
  29. 10.1016/S0006-3495(90)82533-9
  30. 10.1016/0896-6273(93)90277-X
  31. 10.1007/BF00275079
  32. 10.1007/BF00374949
  33. Tsai K. Y. Carnevale N. T.Caliborne B. J.andBrown T. H.(1994). Efficient mapping from neuroanatomical to electrotonic space.Network(in press). (10.1088/0954-898X_5_1_002)
  34. 10.1073/pnas.87.17.6718
Dates
Type When
Created 20 years, 7 months ago (Dec. 31, 2004, 10:44 p.m.)
Deposited 1 year, 9 months ago (Oct. 23, 2023, 9:41 p.m.)
Indexed 1 month, 1 week ago (July 11, 2025, 9:30 p.m.)
Issued 31 years, 5 months ago (March 1, 1994)
Published 31 years, 5 months ago (March 1, 1994)
Published Online 20 years, 10 months ago (Oct. 11, 2004)
Published Print 31 years, 5 months ago (March 1, 1994)
Funders 0

None

@article{Jaffe_1994, title={Confocal laser scanning microscopy reveals voltage‐gated calcium signals within hippocampal dendritic spines}, volume={25}, ISSN={1097-4695}, url={http://dx.doi.org/10.1002/neu.480250303}, DOI={10.1002/neu.480250303}, number={3}, journal={Journal of Neurobiology}, publisher={Wiley}, author={Jaffe, David B. and Fisher, Stephen A. and Brown, Thomas H.}, year={1994}, month=mar, pages={220–233} }