Crossref journal-article
Wiley
Mass Spectrometry Reviews (311)
Abstract

AbstractAmong the many applications of mass spectrometry, biomarker pattern discovery from protein mass spectra has aroused considerable interest in the past few years. While research efforts have raised hopes of early and less invasive diagnosis, they have also brought to light the many issues to be tackled before mass‐spectra‐based proteomic patterns become routine clinical tools. Known issues cover the entire pipeline leading from sample collection through mass spectrometry analytics to biomarker pattern extraction, validation, and interpretation. This study focuses on the data‐analytical phase, which takes as input mass spectra of biological specimens and discovers patterns of peak masses and intensities that discriminate between different pathological states. We survey current work and investigate computational issues concerning the different stages of the knowledge discovery process: exploratory analysis, quality control, and diverse transforms of mass spectra, followed by further dimensionality reduction, classification, and model evaluation. We conclude after a brief discussion of the critical biomedical task of analyzing discovered discriminatory patterns to identify their component proteins as well as interpret and validate their biological implications. © 2006 Wiley Periodicals, Inc., Mass Spec Rev 25:409–449, 2006

Bibliography

Hilario, M., Kalousis, A., Pellegrini, C., & Müller, M. (2006). Processing and classification of protein mass spectra. Mass Spectrometry Reviews, 25(3), 409–449. Portico.

Authors 4
  1. Melanie Hilario (first)
  2. Alexandros Kalousis (additional)
  3. Christian Pellegrini (additional)
  4. Markus Müller (additional)
References 192 Referenced 137
  1. 10.1093/bioinformatics/17.6.495
  2. {'key': 'e_1_2_10_3_1', 'first-page': '3609', 'article-title': 'Serum protein fingerprinting coupled with a pattern‐matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men', 'volume': '62', 'author': 'Adam BL', 'year': '2002', 'journal-title': 'Cancer Res'} / Cancer Res / Serum protein fingerprinting coupled with a pattern‐matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men by Adam BL (2002)
  3. 10.1074/jbc.M210184200
  4. 10.1038/nature01511
  5. 10.1002/pmic.200300574
  6. 10.1002/pmic.200300809
  7. 10.1073/pnas.102102699
  8. 10.1093/bioinformatics/bth446
  9. 10.1021/ac0301806
  10. AndrewsR DiederichJ TickleA.1995.A survey and critique of techniques for extracting rules from neural networks (Technical Report). Neurocomputing Research Centre Queensland. (10.1016/0950-7051(96)81920-4)
  11. 10.1093/bioinformatics/btg484
  12. 10.1002/pmic.200300522
  13. BaileyT ElkanC.1993.Estimating the accuracy of learned concepts. Proceedings of the 13th International Joint Conference on Artificial Intelligence (p 895–900). Morgan Kaufman.
  14. 10.1021/ac00113a006
  15. 10.1097/01.ju.0000069431.95404.56
  16. 10.1002/pmic.200300652
  17. 10.1093/bioinformatics/bth947
  18. 10.1002/(SICI)1522-2683(19991201)20:18<3521::AID-ELPS3521>3.0.CO;2-8
  19. 10.1021/ac990448m
  20. 10.1021/ac990449e
  21. 10.1093/oso/9780198538493.001.0001 / Neural networks for pattern recognition by Bishop CM (1995)
  22. 10.2174/1389201043489648
  23. 10.1109/69.842268
  24. 10.1093/bioinformatics/btg419
  25. 10.1002/1522-2683(20000601)21:11<2243::AID-ELPS2243>3.0.CO;2-K
  26. 10.1007/BF00058655
  27. 10.1023/A:1010933404324
  28. {'key': 'e_1_2_10_29_1', 'volume-title': 'Classification and regression trees', 'author': 'Breiman L', 'year': '1984'} / Classification and regression trees by Breiman L (1984)
  29. 10.1016/S0169-7439(97)00032-4
  30. 10.1073/pnas.97.1.262
  31. 10.1023/A:1009715923555
  32. 10.1016/S0021-9673(02)00588-5
  33. {'key': 'e_1_2_10_34_1', 'first-page': '1659', 'article-title': 'Exploring the proteome with MALDI‐TOF (Editorial)', 'volume': '3', 'author': 'Campa M', 'year': '2003', 'journal-title': 'Proteomics'} / Proteomics / Exploring the proteome with MALDI‐TOF (Editorial) by Campa M (2003)
  34. 10.1002/(SICI)1097-0231(199610)10:13<1683::AID-RCM716>3.0.CO;2-L
  35. 10.1007/s00216-003-1995-x
  36. 10.1038/429496a
  37. 10.1117/12.281504
  38. 10.1093/bioinformatics/18.9.1207
  39. 10.1021/ac991500h
  40. 10.1097/01.SLA.0000064293.57770.42
  41. 10.1021/ac9810516 / Anal Chem / Role of accurate mass measurement (+/− 10ppm) in protein identification strategies employing ms or ms/ms and database searching by Clauser KR (1999)
  42. 10.1080/01621459.1979.10481038 / J Amer Statist Assoc / Robust locally weighted regression and smoothing scatterplots by Cleaveland WS (1979)
  43. CohenWW.1995.Fast effective rule induction. Proceedings of 11th International Conference on Machine Learning p115–123. (10.1016/B978-1-55860-377-6.50023-2)
  44. 10.1002/pmic.200300489
  45. 10.1373/49.10.1615
  46. CoombesKR TsavachidisS MorrisJS BaggerlyKA HungMC KuererHM.2004.Improved peak detection and quantification of mass spectrometry data acquired from surface‐enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform (Technical Report UTMDABTR‐001‐04). The University of Texas M. D. Anderson Cancer Center.
  47. 10.1002/0471200611
  48. {'key': 'e_1_2_10_49_1', 'volume-title': 'An introduction to support vector machines', 'author': 'Cristianini N', 'year': '2000'} / An introduction to support vector machines by Cristianini N (2000)
  49. 10.1373/49.8.1272
  50. 10.1093/jnci/djh056
  51. 10.1162/089976698300017197
  52. DomingosP.2000.A unified bias‐variance decomposition for zero‐one and squared loss. Proceedings of the Seventeenth National Conference on Artificial Intelligence p564–569.
  53. {'key': 'e_1_2_10_54_1', 'volume-title': 'Pattern classification', 'author': 'Duda R', 'year': '2000'} / Pattern classification by Duda R (2000)
  54. 10.1093/bioinformatics/18.suppl_1.S105
  55. EfronB TibshiraniR.1995.Cross‐validation and the boostrap: Estimating the error rate of a prediction rule (Technical Report TR‐477). Departement of Statistics Standford University.
  56. 10.1021/ac990686h
  57. 10.1021/ac011204g
  58. 10.1021/ac034800e
  59. FawcettT.2003.ROC graphs: Notes and practical considerations for data mining researchers (Technical Report). HP Labs.
  60. FeeldersA VerkooijenW.1995.Which method learns most from the data. Proceedings of the 5th International Workshop on AI and Statistics p219–225.
  61. 10.1016/S1387-3806(02)00588-2
  62. 10.1126/science.2675315
  63. 10.1016/S0021-9673(99)00553-1
  64. 10.1016/S0003-2670(03)00570-1
  65. 10.1021/ac0010025
  66. 10.1006/jcss.1997.1504
  67. {'key': 'e_1_2_10_68_1', 'first-page': 'S34', 'article-title': 'Proteinchip clinical proteomics: Computational challenges and solutions', 'volume': '32', 'author': 'Fung E', 'year': '2002', 'journal-title': 'Comput Proteomics Suppl'} / Comput Proteomics Suppl / Proteinchip clinical proteomics: Computational challenges and solutions by Fung E (2002)
  68. 10.1002/(SICI)1522-2683(19991201)20:18<3527::AID-ELPS3527>3.0.CO;2-9
  69. 10.1002/pmic.200300486
  70. 10.1021/ac011203o
  71. 10.1002/pmic.200300566
  72. 10.1002/(SICI)1522-2683(19991201)20:18<3535::AID-ELPS3535>3.0.CO;2-J
  73. 10.1016/j.urolonc.2004.04.008
  74. 10.1021/ac00206a014
  75. 10.1023/A:1012487302797
  76. GuyonI BitterHM AhmedZ BrownM HellerJ.2003.Multivariate non‐linear feature selection with kernel multiplicative updates and Gram‐Schmidt Relief. Proceedings of BISC FLINT CIBI 2003 Workshop. Berkeley.
  77. 10.1109/TKDE.2003.1245283
  78. 10.1007/978-0-387-21606-5
  79. 10.1002/rcm.600
  80. 10.1056/NEJM200102223440801
  81. 10.1002/pmic.200300523
  82. 10.1007/s10142-002-0066-2
  83. 10.1093/bioinformatics/18.suppl_1.S96
  84. 10.1196/annals.1310.015
  85. 10.1093/bioinformatics/btg264
  86. 10.1016/S0169-7439(03)00113-8
  87. 10.1016/S0021-9673(03)00616-2
  88. {'key': 'e_1_2_10_89_1', 'volume-title': 'Analysis of proteomic pattern data for feature selection. Applications of Evolutionary Computing. EvoBIO: Evolutionary Computation and Bioinformatics', 'author': 'Jong K', 'year': '2004'} / Analysis of proteomic pattern data for feature selection. Applications of Evolutionary Computing. EvoBIO: Evolutionary Computation and Bioinformatics by Jong K (2004)
  89. 10.1109/CIBCB.2004.1393930
  90. 10.1021/ac00171a028
  91. 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B
  92. 10.1016/S1044-0305(00)00163-X
  93. {'key': 'e_1_2_10_94_1', 'first-page': '129', 'article-title': 'The feature selection problem: Traditional methods and a new algorithm', 'author': 'Kira K', 'year': '1992', 'journal-title': 'Proc Natl Conf Artif Intell (AAAI‐92)'} / Proc Natl Conf Artif Intell (AAAI‐92) / The feature selection problem: Traditional methods and a new algorithm by Kira K (1992)
  94. KohaviR.1995.A study of cross‐validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on AI. Morgan Kaufman.
  95. 10.1016/S0004-3702(97)00043-X
  96. 10.1007/978-3-642-97610-0
  97. KononenkoI.2004.Estimating attributes: Analysis and extensions of RELIEF. Proceedings of European Conference on Machine Learning.
  98. 10.1158/1078-0432.CCR-1167-3
  99. 10.1073/pnas.2033602100
  100. 10.1002/elps.1150191109
  101. 10.1093/bioinformatics/bth193
  102. 10.1016/S1044-0305(01)00336-1
  103. {'key': 'e_1_2_10_104_1', 'volume-title': 'Elements of machine learning', 'author': 'Langley P', 'year': '1996'} / Elements of machine learning by Langley P (1996)
  104. 10.1021/ac00004a011
  105. 10.1002/pmic.200300515
  106. 10.1021/ac970481d
  107. 10.1093/clinchem/48.8.1296
  108. 10.1093/bioinformatics/btg1066
  109. 10.1093/bioinformatics/bth098
  110. 10.1089/106652703322756159
  111. {'key': 'e_1_2_10_112_1', 'first-page': '51', 'article-title': 'A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns', 'volume': '13', 'author': 'Liu H', 'year': '2002', 'journal-title': 'Genome Inform'} / Genome Inform / A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns by Liu H (2002)
  112. 10.1016/0021-9673(94)00727-6
  113. 10.1021/ac00190a023
  114. 10.1021/ac035312
  115. 10.1093/bioinformatics/18.suppl_1.S155
  116. 10.1016/S1387-3806(01)00562-0
  117. 10.1021/ac00119a027
  118. {'key': 'e_1_2_10_119_1', 'volume-title': 'Molecular scanner data analysis', 'author': 'Muller M', 'year': '2003'} / Molecular scanner data analysis by Muller M (2003)
  119. 10.1016/S1044-0305(01)00358-0
  120. 10.1002/1615-9861(200210)2:10<1413::AID-PROT1413>3.0.CO;2-P
  121. 10.1002/pmic.200300516
  122. 10.1016/S0021-9673(98)00021-1
  123. 10.1016/S1044-0305(01)00301-4
  124. 10.1016/S0140-6736(04)16046-7
  125. 10.1002/mas.20002
  126. 10.1080/01621459.2000.10473930 / J Am Stat Assoc / Receiver operating characteristic methodology by Pepe MS (1995)
  127. 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
  128. 10.1373/49.8.1276
  129. 10.1016/S0140-6736(02)07746-2
  130. 10.1373/49.5.752
  131. 10.1117/1.1501561
  132. 10.1002/pmic.200400857
  133. {'key': 'e_1_2_10_134_1', 'volume-title': 'Numerical recipies in C', 'author': 'Press WH', 'year': '1995'} / Numerical recipies in C by Press WH (1995)
  134. 10.1023/A:1007601015854
  135. 10.1002/pmic.200300518
  136. 10.1093/clinchem/48.10.1835
  137. 10.1111/1541-0420.00017
  138. {'key': 'e_1_2_10_139_1', 'volume-title': 'C4.5: Programs for machine learning', 'author': 'Quinlan JR', 'year': '1993'} / C4.5: Programs for machine learning by Quinlan JR (1993)
  139. {'key': 'e_1_2_10_140_1', 'first-page': '446', 'volume-title': 'Computational learning theory and natural learning systems', 'author': 'Quinlan JR', 'year': '1994'} / Computational learning theory and natural learning systems by Quinlan JR (1994)
  140. 10.5858/2002-126-1518-PATTMD
  141. 10.1016/1044-0305(92)87004-I
  142. 10.1021/ac00111a031
  143. 10.1021/ac951158i
  144. {'key': 'e_1_2_10_145_1', 'first-page': '6971', 'article-title': 'Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural‐network analysis: Identification of key issues affecting potential clinical utility', 'volume': '63', 'author': 'Rogers MA', 'year': '2003', 'journal-title': 'Cancer Res'} / Cancer Res / Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural‐network analysis: Identification of key issues affecting potential clinical utility by Rogers MA (2003)
  145. 10.1021/pr015514r
  146. 10.1093/bioinformatics/bth460
  147. 10.1093/bioinformatics/bth372
  148. 10.1021/ac60214a047
  149. 10.1016/S1044-0305(03)00345-3
  150. 10.7551/mitpress/4057.001.0001 / Kernel methods in computational biology by Schölfkopf B (2004)
  151. {'key': 'e_1_2_10_152_1', 'first-page': '1', 'volume-title': 'Artificial intelligence and heuristic methods in bioinformatics', 'author': 'Schölkopf B', 'year': '2003'} / Artificial intelligence and heuristic methods in bioinformatics by Schölkopf B (2003)
  152. 10.1016/1044-0305(94)00091-D
  153. 10.1016/j.chroma.2004.04.004
  154. 10.1021/ar990163w
  155. 10.1021/ac9608679
  156. 10.1073/pnas.95.20.11532
  157. 10.1093/jnci/95.1.14
  158. {'key': 'e_1_2_10_159_1', 'volume-title': 'Morphological image analysis', 'author': 'Soille P', 'year': '2003'} / Morphological image analysis by Soille P (2003)
  159. 10.1093/bioinformatics/btg182
  160. 10.1186/1471-2105-4-24
  161. 10.1373/clinchem.2003.028209
  162. 10.1016/j.jasms.2004.04.034
  163. 10.1073/pnas.082099299
  164. 10.1093/bioinformatics/bth357
  165. 10.1016/0197-2456(93)90225-3
  166. 10.1007/BF00993473
  167. 10.1073/pnas.091062498
  168. {'key': 'e_1_2_10_169_1', 'volume-title': 'Statistical learning theory', 'author': 'Vapnik V', 'year': '1998'} / Statistical learning theory by Vapnik V (1998)
  169. 10.1038/nmeth705
  170. 10.1016/S1044-0305(98)00069-5
  171. 10.1002/pmic.200300519
  172. 10.1186/1471-2105-5-26
  173. 10.1021/ac0354701
  174. 10.1021/ac00131a023
  175. 10.1002/pmic.200300513
  176. 10.1038/85686
  177. {'key': 'e_1_2_10_178_1', 'first-page': '31', 'article-title': 'Detection of early‐stage cancer by serium protein analysis', 'volume': '32', 'author': 'Watkins B', 'year': '2001', 'journal-title': 'Am Lab'} / Am Lab / Detection of early‐stage cancer by serium protein analysis by Watkins B (2001)
  178. 10.1021/ac960435y
  179. WolpertDH.1992.Stacked generalization (Technical Report LA‐UR‐90‐3460). Los Alamos NM.
  180. 10.1002/pmic.200300590
  181. 10.1002/1615-9861(200210)2:10<1365::AID-PROT1365>3.0.CO;2-9
  182. 10.1093/bioinformatics/btg210
  183. 10.1038/nrc1043
  184. 10.1016/S0140-6736(03)14068-8
  185. 10.1093/nar/30.4.e15
  186. 10.1093/biostatistics/4.3.449
  187. 10.1016/S1044-0305(97)82982-0
  188. 10.1016/S1044-0305(97)00284-5
  189. 10.1021/ac980724h
  190. 10.1002/pmic.200300520
  191. 10.1073/pnas.2532248100
  192. 10.1093/bioinformatics/17.suppl_1.S323
Dates
Type When
Created 19 years, 6 months ago (Feb. 4, 2006, 5:48 a.m.)
Deposited 1 year, 6 months ago (Feb. 2, 2024, 1:39 p.m.)
Indexed 3 months, 2 weeks ago (May 9, 2025, 1:50 a.m.)
Issued 19 years, 6 months ago (Feb. 3, 2006)
Published 19 years, 6 months ago (Feb. 3, 2006)
Published Online 19 years, 6 months ago (Feb. 3, 2006)
Published Print 19 years, 3 months ago (May 1, 2006)
Funders 0

None

@article{Hilario_2006, title={Processing and classification of protein mass spectra}, volume={25}, ISSN={1098-2787}, url={http://dx.doi.org/10.1002/mas.20072}, DOI={10.1002/mas.20072}, number={3}, journal={Mass Spectrometry Reviews}, publisher={Wiley}, author={Hilario, Melanie and Kalousis, Alexandros and Pellegrini, Christian and Müller, Markus}, year={2006}, month=feb, pages={409–449} }