Crossref journal-article
Wiley
Journal of Computational Chemistry (311)
Abstract

We introduce a class of partial atomic charge assignment method that provides ab initio quality description of the electrostatics of bioorganic molecules. The method uses a set of models that neither have a fixed functional form nor require a fixed set of parameters, and therefore are capable of capturing the complexities of the charge distribution in great detail. Random Forest regression is used to build separate charge models for elements H, C, N, O, F, S, and Cl, using training data consisting of partial charges along with a description of their surrounding chemical environments; training set charges are generated by fitting to the b3lyp/6‐31G* electrostatic potential (ESP) and are subsequently refined to improve consistency and transferability of the charge assignments. Using a set of 210 neutral, small organic molecules, the absolute hydration free energy calculated using these charges in conjunction with Generalized Born solvation model shows a low mean unsigned error, close to 1 kcal/mol, from the experimental data. Using another large and independent test set of chemically diverse organic molecules, the method is shown to accurately reproduce charge‐dependent observables—ESP and dipole moment—from ab initio calculations. The method presented here automatically provides an estimate of potential errors in the charge assignment, enabling systematic improvement of these models using additional data. This work has implications not only for the future development of charge models but also in developing methods to describe many other chemical properties that require accurate representation of the electronic structure of the system. © 2013 Wiley Periodicals, Inc.

Bibliography

Rai, B. K., & Bakken, G. A. (2013). Fast and accurate generation of ab initio quality atomic charges using nonparametric statistical regression. Journal of Computational Chemistry, 34(19), 1661–1671. Portico.

Authors 2
  1. Brajesh K. Rai (first)
  2. Gregory A. Bakken (additional)
References 56 Referenced 45
  1. 10.1021/ja00124a002
  2. 10.1021/jp973084f
  3. 10.1021/ja9621760
  4. 10.1002/(SICI)1096-987X(199604)17:5/6<642::AID-JCC6>3.0.CO;2-U
  5. 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  6. 10.1002/jcc.20035
  7. 10.1021/jp003919d
  8. 10.1063/1.1740588
  9. 10.1063/1.1747632
  10. 10.1016/0040-4020(80)80168-2
  11. 10.1021/ja00275a013
  12. 10.1021/j100161a070
  13. 10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
  14. 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
  15. 10.1002/jcc.10128
  16. 10.1002/jcc.10349
  17. 10.1002/(SICI)1096-987X(19991115)20:14<1495::AID-JCC3>3.0.CO;2-3
  18. 10.1021/jp972682r
  19. 10.1002/jcc.10244
  20. 10.1021/ct200866d
  21. 10.1002/jcc.540140706
  22. 10.1002/jcc.540110404
  23. 10.1002/jcc.540130609
  24. 10.1002/jcc.540050204
  25. 10.1002/jcc.540110311
  26. 10.1002/jcc.540080616
  27. 10.1021/ja00049a045
  28. 10.1021/j100142a004
  29. 10.1021/ct800166r
  30. 10.1103/PhysRevLett.98.146401
  31. 10.1103/PhysRevLett.104.136403
  32. 10.1103/PhysRevLett.108.058301
  33. 10.1021/cm100795d
  34. 10.1007/978-0-387-21606-5
  35. {'key': 'e_1_2_6_35_1', 'volume-title': 'Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)', 'author': 'Carl Edward R.', 'year': '2005'} / Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) by Carl Edward R. (2005)
  36. 10.1023/A:1010933404324
  37. 10.1063/1.3553717
  38. E.Jones T.Oliphant P.Peterson SciPy: Open source scientific tools for Python.2011. Available at:http://www.scipy.org
  39. G.van Rossum andF. L.Drake(eds) Python Reference Manual PythonLabs Virginia USA 2001. Available at:http://www.python.org
  40. 10.1021/ja00172a038
  41. 10.1002/jcc.20292
  42. 10.1021/ci049714
  43. 10.1021/ct800445x
  44. 10.1021/ct900587b
  45. 10.1021/jm030056e
  46. 10.1021/jm800128k
  47. 10.1111/j.1747-0285.2006.00341.x
  48. 10.1021/ci300031s
  49. 10.1021/ct050097l / J. Chem. Theory Comput. by Rizzo R. C. (2005)
  50. 10.1021/jp0667442
  51. 10.1002/jcc.21876
  52. 10.1021/jm070549
  53. 10.1021/jp0484579
  54. 10.1002/jcc.10400
  55. 10.1021/jp806838b
  56. 10.1021/jp0764384
Dates
Type When
Created 12 years, 3 months ago (May 7, 2013, 11:38 a.m.)
Deposited 1 year, 10 months ago (Oct. 3, 2023, 12:27 p.m.)
Indexed 1 month ago (July 24, 2025, 8:04 a.m.)
Issued 12 years, 3 months ago (May 7, 2013)
Published 12 years, 3 months ago (May 7, 2013)
Published Online 12 years, 3 months ago (May 7, 2013)
Published Print 12 years, 1 month ago (July 15, 2013)
Funders 0

None

@article{Rai_2013, title={Fast and accurate generation of ab initio quality atomic charges using nonparametric statistical regression}, volume={34}, ISSN={1096-987X}, url={http://dx.doi.org/10.1002/jcc.23308}, DOI={10.1002/jcc.23308}, number={19}, journal={Journal of Computational Chemistry}, publisher={Wiley}, author={Rai, Brajesh K. and Bakken, Gregory A.}, year={2013}, month=may, pages={1661–1671} }