Abstract
We introduce a class of partial atomic charge assignment method that provides ab initio quality description of the electrostatics of bioorganic molecules. The method uses a set of models that neither have a fixed functional form nor require a fixed set of parameters, and therefore are capable of capturing the complexities of the charge distribution in great detail. Random Forest regression is used to build separate charge models for elements H, C, N, O, F, S, and Cl, using training data consisting of partial charges along with a description of their surrounding chemical environments; training set charges are generated by fitting to the b3lyp/6‐31G* electrostatic potential (ESP) and are subsequently refined to improve consistency and transferability of the charge assignments. Using a set of 210 neutral, small organic molecules, the absolute hydration free energy calculated using these charges in conjunction with Generalized Born solvation model shows a low mean unsigned error, close to 1 kcal/mol, from the experimental data. Using another large and independent test set of chemically diverse organic molecules, the method is shown to accurately reproduce charge‐dependent observables—ESP and dipole moment—from ab initio calculations. The method presented here automatically provides an estimate of potential errors in the charge assignment, enabling systematic improvement of these models using additional data. This work has implications not only for the future development of charge models but also in developing methods to describe many other chemical properties that require accurate representation of the electronic structure of the system. © 2013 Wiley Periodicals, Inc.
References
56
Referenced
45
10.1021/ja00124a002
10.1021/jp973084f
10.1021/ja9621760
10.1002/(SICI)1096-987X(199604)17:5/6<642::AID-JCC6>3.0.CO;2-U
10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
10.1002/jcc.20035
10.1021/jp003919d
10.1063/1.1740588
10.1063/1.1747632
10.1016/0040-4020(80)80168-2
10.1021/ja00275a013
10.1021/j100161a070
10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
10.1002/jcc.10128
10.1002/jcc.10349
10.1002/(SICI)1096-987X(19991115)20:14<1495::AID-JCC3>3.0.CO;2-3
10.1021/jp972682r
10.1002/jcc.10244
10.1021/ct200866d
10.1002/jcc.540140706
10.1002/jcc.540110404
10.1002/jcc.540130609
10.1002/jcc.540050204
10.1002/jcc.540110311
10.1002/jcc.540080616
10.1021/ja00049a045
10.1021/j100142a004
10.1021/ct800166r
10.1103/PhysRevLett.98.146401
10.1103/PhysRevLett.104.136403
10.1103/PhysRevLett.108.058301
10.1021/cm100795d
10.1007/978-0-387-21606-5
{'key': 'e_1_2_6_35_1', 'volume-title': 'Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)', 'author': 'Carl Edward R.', 'year': '2005'}
/ Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) by Carl Edward R. (2005)10.1023/A:1010933404324
10.1063/1.3553717
- E.Jones T.Oliphant P.Peterson SciPy: Open source scientific tools for Python.2011. Available at:http://www.scipy.org
- G.van Rossum andF. L.Drake(eds) Python Reference Manual PythonLabs Virginia USA 2001. Available at:http://www.python.org
10.1021/ja00172a038
10.1002/jcc.20292
10.1021/ci049714
10.1021/ct800445x
10.1021/ct900587b
10.1021/jm030056e
10.1021/jm800128k
10.1111/j.1747-0285.2006.00341.x
10.1021/ci300031s
10.1021/ct050097l
/ J. Chem. Theory Comput. by Rizzo R. C. (2005)10.1021/jp0667442
10.1002/jcc.21876
10.1021/jm070549
10.1021/jp0484579
10.1002/jcc.10400
10.1021/jp806838b
10.1021/jp0764384
Dates
Type | When |
---|---|
Created | 12 years, 3 months ago (May 7, 2013, 11:38 a.m.) |
Deposited | 1 year, 10 months ago (Oct. 3, 2023, 12:27 p.m.) |
Indexed | 1 month ago (July 24, 2025, 8:04 a.m.) |
Issued | 12 years, 3 months ago (May 7, 2013) |
Published | 12 years, 3 months ago (May 7, 2013) |
Published Online | 12 years, 3 months ago (May 7, 2013) |
Published Print | 12 years, 1 month ago (July 15, 2013) |
@article{Rai_2013, title={Fast and accurate generation of ab initio quality atomic charges using nonparametric statistical regression}, volume={34}, ISSN={1096-987X}, url={http://dx.doi.org/10.1002/jcc.23308}, DOI={10.1002/jcc.23308}, number={19}, journal={Journal of Computational Chemistry}, publisher={Wiley}, author={Rai, Brajesh K. and Bakken, Gregory A.}, year={2013}, month=may, pages={1661–1671} }