Abstract
AbstractProtein–ligand docking can be formulated as a parameter optimization problem associated with an accurate scoring function, which aims to identify the translation, orientation, and conformation of a docked ligand with the lowest energy. The parameter optimization problem for highly flexible ligands with many rotatable bonds is more difficult than that for less flexible ligands using genetic algorithm (GA)‐based approaches, due to the large numbers of parameters and high correlations among these parameters. This investigation presents a novel optimization algorithm SODOCK based on particle swarm optimization (PSO) for solving flexible protein–ligand docking problems. To improve efficiency and robustness of PSO, an efficient local search strategy is incorporated into SODOCK. The implementation of SODOCK adopts the environment and energy function of AutoDock 3.05. Computer simulation results reveal that SODOCK is superior to the Lamarckian genetic algorithm (LGA) of AutoDock, in terms of convergence performance, robustness, and obtained energy, especially for highly flexible ligands. The results also reveal that PSO is more suitable than the conventional GA in dealing with flexible docking problems with high correlations among parameters. This investigation also compared SODOCK with four state‐of‐the‐art docking methods, namely GOLD 1.2, DOCK 4.0, FlexX 1.8, and LGA of AutoDock 3.05. SODOCK obtained the smallest RMSD in 19 of 37 cases. The average 2.29 Å of the 37 RMSD values of SODOCK was better than those of other docking programs, which were all above 3.0 Å. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 612–623, 2007
References
43
Referenced
106
{'key': 'e_1_2_7_2_2', 'first-page': '396', 'volume': '7', 'author': 'Jain A. N.', 'year': '2004', 'journal-title': 'Curr Opin Drug Discov Dev'}
/ Curr Opin Drug Discov Dev by Jain A. N. (2004)10.1023/A:1011115820450
10.1006/jmbi.1996.0897
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
10.1006/jmbi.1996.0477
10.1016/1074-5521(95)90050-0
10.1002/pro.5560070411
10.1093/protein/14.2.105
10.1110/ps.041153605
10.1021/jm0203783
10.1002/prot.340080302
10.1002/pro.5560061011
- Kennedy J.;Eberhart R. C.IEEE Int Conf Neural Netw Perth WA 1995; pp.1942–1948.
10.1109/TEVC.2004.826069
-
Liu B.‐F.;Chen H.‐M.;Ho S.‐Y.In Proceedings of Genetic and Evolutionary Computation Conference Washington DC 2005; pp.267–268.
(
10.1145/1068009.1068049
) 10.1287/moor.6.1.19
-
Eberhart R. C.;Shi Y.In Proceedings of Seventh International Conference on Evolutionary Programming San Diego CA 1998; pp.611–616.
(
10.1007/BFb0040812
) - Shi Y.;Eberhart R. C.IEEE Int Conf Evol Comput Anchorage AK 1998; pp.69–73.
10.1007/BFb0040810
/ Evolutionary Programming by Shi Y. (1998){'key': 'e_1_2_7_21_2', 'first-page': '581', 'volume-title': 'Evolutionary Programming', 'author': 'Kennedy J.', 'year': '1998'}
/ Evolutionary Programming by Kennedy J. (1998){'volume-title': 'Computational Intelligence PC Tools', 'year': '1996', 'author': 'Eberhart R. C.', 'key': 'e_1_2_7_22_2'}
/ Computational Intelligence PC Tools by Eberhart R. C. (1996)- Kennedy J.In Proceedings of the 1999 Congress on Evolutionary Computation Piscataway NJ 1999; pp.1931–1938.
10.1109/4235.985692
{'key': 'e_1_2_7_25_2', 'first-page': '216', 'volume-title': 'Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation', 'author': 'Parsopoulos K. E.', 'year': '2002'}
/ Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation by Parsopoulos K. E. (2002)- Eberhart R. C.;Shi Y.IEEE Int Conf Evol Comput La Jolla CA 2000; pp.84–88.
10.1007/11589990_80
/ AI 2005: Advances in Artificial Intelligence by Mohais A. S. (2005){'key': 'e_1_2_7_28_2', 'first-page': '1305', 'volume-title': 'AI 2005: Advances in Artificial Intelligence', 'author': 'Li X. Y.', 'year': '2005'}
/ AI 2005: Advances in Artificial Intelligence by Li X. Y. (2005){'key': 'e_1_2_7_29_2', 'first-page': '3659', 'author': 'Liang J. J.', 'year': '2004', 'journal-title': 'IEEE Int Conf Syst Man Cybern'}
/ IEEE Int Conf Syst Man Cybern by Liang J. J. (2004)10.1109/TEVC.2004.826067
{'volume-title': 'Genetic Algorithms in Search, Optimization and Machine Learning', 'year': '1989', 'author': 'Goldberg D. E.', 'key': 'e_1_2_7_31_2'}
/ Genetic Algorithms in Search, Optimization and Machine Learning by Goldberg D. E. (1989)10.1162/106365600750078808
{'key': 'e_1_2_7_33_2', 'first-page': '23', 'volume-title': 'Foundations of Genetic Algorithms', 'author': 'Davidor Y.', 'year': '1991'}
/ Foundations of Genetic Algorithms by Davidor Y. (1991)10.1016/S0020-0255(97)00017-0
{'key': 'e_1_2_7_35_2', 'first-page': '415', 'volume': '4', 'author': 'Goldberg D. E.', 'year': '1990', 'journal-title': 'Complex Syst'}
/ Complex Syst by Goldberg D. E. (1990)10.1016/S0045-7825(99)00388-6
10.1007/3-540-61723-X_982
/ Parallel Problem Solving from Nature—PPSN IV by Mühlenbein H. (1996)10.1016/S0303-2647(03)00135-7
10.1002/prot.20149
10.1002/jcc.10306
{'volume-title': 'Genetic Algorithms in Engineering and Computer Science', 'year': '1995', 'author': 'KrishnaKumar K.', 'key': 'e_1_2_7_41_2'}
/ Genetic Algorithms in Engineering and Computer Science by KrishnaKumar K. (1995)10.1023/B:JCAM.0000017496.76572.6f
10.1023/A:1016357811882
10.1109/TEVC.2004.835176
Dates
Type | When |
---|---|
Created | 18 years, 8 months ago (Dec. 21, 2006, 8:22 a.m.) |
Deposited | 7 months, 3 weeks ago (Jan. 12, 2025, 12:55 p.m.) |
Indexed | 6 days, 19 hours ago (Aug. 30, 2025, 1:15 p.m.) |
Issued | 18 years, 8 months ago (Dec. 21, 2006) |
Published | 18 years, 8 months ago (Dec. 21, 2006) |
Published Online | 18 years, 8 months ago (Dec. 21, 2006) |
Published Print | 18 years, 7 months ago (Jan. 30, 2007) |
@article{Chen_2006, title={SODOCK: Swarm optimization for highly flexible protein–ligand docking}, volume={28}, ISSN={1096-987X}, url={http://dx.doi.org/10.1002/jcc.20542}, DOI={10.1002/jcc.20542}, number={2}, journal={Journal of Computational Chemistry}, publisher={Wiley}, author={Chen, Hung‐Ming and Liu, Bo‐Fu and Huang, Hui‐Ling and Hwang, Shiow‐Fen and Ho, Shinn‐Ying}, year={2006}, month=dec, pages={612–623} }