Abstract
AbstractWe have examined the performance of semiempirical quantum mechanical methods in solving the problem of accurately predicting protein‐ligand binding energies and geometries. Firstly, AM1 and PM3 geometries and binding enthalpies between small molecules that simulate typical ligand‐protein interactions were compared with high level quantum mechanical techniques that include electronic correlation (e.g., MP2 or B3LYP). Species studied include alkanes, aromatic systems, molecules including groups with hypervalent sulfur or with donor or acceptor hydrogen bonding capability, as well as ammonium or carboxylate ions. B3LYP/6‐311+G(2d,p) binding energies correlated very well with the BSSE corrected MP2/6‐31G(d) values. AM1 binding enthalpies also showed good correlation with MP2 values, and their systematic deviation is acceptable when enthalpies are used for the comparison of interaction energies between ligands and a target. PM3 otherwise gave erratic energy differences in comparison to the B3LYP or MP2 approaches. As one would expect, the geometries of the binding complexes showed the known limitations of the semiempirical and DFT methods. AM1 calculations were subsequently applied to a test set consisting of “real” protein active site‐ligand complexes. Preliminary results indicate that AM1 could be a valuable tool for the design of new drugs using proteins as templates. This approach also has a reasonable computational cost. The ligand‐protein X‐ray structures were reasonably reproduced by AM1 calculations and the corresponding AM1 binding enthalpies are in agreement with the results from the “small molecules” test set. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1347–1358, 2005
References
74
Referenced
38
{'key': 'e_1_2_5_2_2', 'series-title': '3D QSAR in Drug Design: Ligand‐Protein Interations and Molecular Similarity', 'author': 'Kubinyi H.', 'year': '1998'}
/ 3D QSAR in Drug Design: Ligand‐Protein Interations and Molecular Similarity by Kubinyi H. (1998)10.1039/B409570G
10.1002/jcc.20082
10.1016/S0166-1280(98)00475-8
10.1021/jp0307452
10.1007/s00214-002-0418-y
10.1063/1.1698929
10.1063/1.1699030
10.1039/tf9534901375
10.1088/0370-1298/68/2/304
10.1021/ja00744a033
10.1021/ja00299a024
10.1002/jcc.540100208
10.1002/(SICI)1096-987X(200005)21:7<572::AID-JCC6>3.0.CO;2-X
10.1007/s00214-003-0454-2
10.1007/s00214-004-0610-3
10.1002/(SICI)1097-4636(19971215)37:4<585::AID-JBM18>3.0.CO;2-7
10.1021/nl020283o
10.1080/07391102.2002.10506818
10.1002/qua.10778
10.1002/jcc.10150
10.1002/jcc.10162
10.1002/jcc.10356
10.1103/PhysRevB.51.12947
10.1016/S0166-1280(00)00762-4
10.1002/jcc.10201
10.1021/jp9833808
10.1021/ja0035710
- MOPAC 2000 v. 1.11; J. J. P. Stewart Fujitsu Limited: Tokyo Japan 1999 within Chem3D Ultra 8.0 package 2004. CambridgeSoft Corporation 100 CambridgePark Drive Cambridge MA 02140‐9802 USA.http://www.cambridgesoft.com.
10.1103/PhysRev.46.618
10.1063/1.464913
10.1103/PhysRevB.37.785
10.2174/0929867033457647
10.1080/00268977000101561
10.1016/j.theochem.2004.01.018
{'key': 'e_1_2_5_37_2', 'volume-title': 'GAUSSIAN 03', 'author': 'Frisch M. J.', 'year': '2003'}
/ GAUSSIAN 03 by Frisch M. J. (2003)10.1016/0009-2614(95)01089-R
{'key': 'e_1_2_5_39_2', 'volume-title': 'Exploring Chemistry with Electronic Structure Methods', 'author': 'Foresman J. B.', 'year': '1996'}
/ Exploring Chemistry with Electronic Structure Methods by Foresman J. B. (1996)10.1002/cem.1180020306
- Sybyl version 6.9; Tripos Associates Inc.: St. Louis MO 2002.http://www.tripos.com.
{'key': 'e_1_2_5_42_2', 'volume-title': '3‐D QSAR in Drug Design: Theory Methods and Applications', 'author': 'Kubinyi H.', 'year': '1993'}
/ 3‐D QSAR in Drug Design: Theory Methods and Applications by Kubinyi H. (1993)- Protein Data Bank:http://www.rcsb.org/pdb/.
10.1093/nar/28.1.235
10.1002/jcc.540100804
10.1006/jmbi.1996.0477
10.1016/S0927-0256(02)00448-2
10.1016/S0009-2614(00)00170-6
10.1021/jp961239y
10.1016/0022-2836(91)90271-7
10.1021/ja00170a016
10.1002/(SICI)1096-987X(19970115)18:1<70::AID-JCC7>3.0.CO;2-X
10.1021/jp970571m
10.1021/j100002a030
10.1021/j100132a018
10.1002/jcc.540130916
10.1021/jp003098c
10.1021/ja011490d
10.1007/s10822-004-3741-7
10.1021/jp001974g
10.1016/j.cplett.2003.09.030
10.1039/B307534F
/ Phys Chem‐Chem Phys by Davies A. S. (2003)10.1021/jp013694m
10.1016/S0166-1280(01)00673-X
10.1021/jp9844967
10.1016/S0009-2614(01)01417-8
10.1063/1.1344891
10.1021/bi960189k
10.1006/jmbi.1993.1211
10.1038/nsb0495-293
10.1007/BF02704000
10.1021/bi990098y
10.1042/bj3510335
/ Biochem J by Wright P. A. (2000)10.1107/S0108768187007559
10.1016/j.ejmech.2004.02.007
Dates
Type | When |
---|---|
Created | 20 years, 1 month ago (July 14, 2005, 9:15 a.m.) |
Deposited | 1 year, 11 months ago (Sept. 28, 2023, 2:06 p.m.) |
Indexed | 4 months, 1 week ago (April 28, 2025, 11:28 a.m.) |
Issued | 20 years, 1 month ago (July 14, 2005) |
Published | 20 years, 1 month ago (July 14, 2005) |
Published Online | 20 years, 1 month ago (July 14, 2005) |
Published Print | 19 years, 11 months ago (Oct. 1, 2005) |
@article{Villar_2005, title={Are AM1 ligand‐protein binding enthalpies good enough for use in the rational design of new drugs?}, volume={26}, ISSN={1096-987X}, url={http://dx.doi.org/10.1002/jcc.20276}, DOI={10.1002/jcc.20276}, number={13}, journal={Journal of Computational Chemistry}, publisher={Wiley}, author={Villar, R. and Gil, M. J. and García, J. I. and Martínez‐Merino, V.}, year={2005}, month=jul, pages={1347–1358} }