Abstract
AbstractIt is a well‐known phenomenon called superconvergence in the mathematical literature that the error level of an integral quantity can be much smaller than the magnitude of the local errors involved in the computation of this quantity. When discretizing an integrated form of Fick's second law of diffusion the local errors reflect the accuracy of individual concentration points while the integral quantity has the physical meaning of the flux. This article demonstrates how an extraordinary fast exponential convergence towards zero can be achieved for the simulated flux error on the basis of finite–difference approximations that are only second‐order (Box 2 method) or fourth‐order (Box 4 method) accurate as far as the level of local errors is concerned. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 619–632, 2005
Bibliography
Rudolph, M. (2005). Attaining exponential convergence for the flux error with secondâ and fourthâorder accurate finiteâdifference equations. I. Presentation of the basic concept and application to a pure diffusion system. Journal of Computational Chemistry, 26(6), 619â632. Portico.
References
28
Referenced
55
10.1007/978-3-662-02549-9
10.1016/S0022-0728(02)00917-8
10.1016/S0097-8485(00)00071-1
10.1016/S0097-8485(00)00082-6
10.1016/S1476-9271(02)00080-4
10.1016/S0097-8485(02)00039-6
10.1002/jcc.20037
10.1002/jcc.10401
/ J Comput Chem by Bieniasz L. K. (2004)10.1093/mnras/84.8.592
10.1007/978-3-322-96752-7
/ Numerik partieller Differentialgleichungen by Großmann Ch. (1994)10.1016/S0022-0728(02)01257-3
10.1016/j.jelechem.2004.05.017
10.1016/0022-0728(94)87054-3
{'key': 'e_1_2_8_15_2', 'first-page': '81', 'volume-title': 'Physical Electrochemistry: Principles, Methods, and Applications', 'author': 'Rudolph M.', 'year': '1995'}
/ Physical Electrochemistry: Principles, Methods, and Applications by Rudolph M. (1995){'key': 'e_1_2_8_16_2', 'volume-title': 'Electrochemical Methods. Fundamentals and Applications', 'author': 'Bard A. J.', 'year': '2001'}
/ Electrochemical Methods. Fundamentals and Applications by Bard A. J. (2001)10.1016/S0022-0728(03)00379-6
10.1021/ac60210a007
10.1016/0022-0728(91)85425-O
10.1016/0022-0728(92)80415-Z
10.1002/jcc.20200
{'key': 'e_1_2_8_22_2', 'first-page': '565', 'volume-title': 'Differential‐ und Integralrechnung', 'author': 'Fichtenholz G. M.', 'year': '1972'}
/ Differential‐ und Integralrechnung by Fichtenholz G. M. (1972)10.1016/0022-0728(92)80167-3
10.1016/S0097-8485(97)00031-4
/ Comput Chem by Britz D. (1998){'key': 'e_1_2_8_25_2', 'volume-title': 'Mathematik‐Handbuch für Technik und Naturwissenschaft', 'year': '1975'}
/ Mathematik‐Handbuch für Technik und Naturwissenschaft (1975)10.1016/0098-1354(90)87047-S
10.1016/S0022-0728(01)00573-3
10.1016/S0022-0728(01)00641-6
10.1016/S0022-0728(03)00149-9
/ J Electroanal Chem by Britz T. J. (2003)
Dates
Type | When |
---|---|
Created | 20 years, 6 months ago (March 2, 2005, 10:48 a.m.) |
Deposited | 1 year, 10 months ago (Oct. 16, 2023, 11:52 p.m.) |
Indexed | 1 year, 3 months ago (June 2, 2024, 10:55 a.m.) |
Issued | 20 years, 6 months ago (March 2, 2005) |
Published | 20 years, 6 months ago (March 2, 2005) |
Published Online | 20 years, 6 months ago (March 2, 2005) |
Published Print | 20 years, 4 months ago (April 30, 2005) |
@article{Rudolph_2005, title={Attaining exponential convergence for the flux error with second‐ and fourth‐order accurate finite‐difference equations. I. Presentation of the basic concept and application to a pure diffusion system}, volume={26}, ISSN={1096-987X}, url={http://dx.doi.org/10.1002/jcc.20200}, DOI={10.1002/jcc.20200}, number={6}, journal={Journal of Computational Chemistry}, publisher={Wiley}, author={Rudolph, Manfred}, year={2005}, month=mar, pages={619–632} }