Crossref journal-article
Wiley
Journal of Computational Chemistry (311)
Abstract

AbstractBased on a partitioning of the total correlation energy into contributions from parallel‐ and antiparallel‐spin pairs of electrons, a modified third‐order Møller–Plesset (MP) perturbation theory is developed. The method, termed SCS–MP3 (SCS for spin‐component‐scaled) continues previous work on an improved version of MP2 (S. Grimme, J Chem Phys 2003, 118, 9095). A benchmark set of 32 isogyric reaction energies, 11 atomization energies, and 11 stretched geometries is used to assess to performance of the model in comparison to the standard quantum chemical approaches MP2, MP3, and QCISD(T). It is found, that the new method performs significantly better than usual MP2/MP3 and even outperforms the more costly QCISD method. Opposite to the usual MP series, the SCS third‐order correction uniformly improves the results. Dramatic enhancements are especially observed for the more difficult atomization energies, some of the stretched geometries, and reaction and ionization energies involving transition metal compounds where the method seems to be competitive or even superior to the widely used density functional approaches. Further tests performed for other complex systems (biradicals, C20 isomers, transition states) demonstrate that the SCS–MP3 model yields often results of QCISD(T) accuracy. The uniformity with which the new approach improves for very different correlation problems indicates significant robustness, and suggests it as a valuable quantum chemical method of general use. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1529–1537, 2003

Bibliography

Grimme, S. (2003). Improved third‐order Møller–Plesset perturbation theory. Journal of Computational Chemistry, 24(13), 1529–1537. Portico.

Authors 1
  1. Stefan Grimme (first)
References 47 Referenced 118
  1. 10.1002/9781119019572
  2. 10.1021/jp953749i
  3. 10.1002/cphc.200390006
  4. 10.1063/1.481544
  5. {'volume-title': 'Density‐Functional Theory of Atoms and Molecules', 'year': '1989', 'author': 'Parr R. G.', 'key': 'e_1_2_7_6_2'} / Density‐Functional Theory of Atoms and Molecules by Parr R. G. (1989)
  6. {'volume-title': "A Chemist's Guide to Density Functional Theory", 'year': '2000', 'author': 'Koch W.', 'key': 'e_1_2_7_7_2'} / A Chemist's Guide to Density Functional Theory by Koch W. (2000)
  7. 10.1103/PhysRev.46.618
  8. {'key': 'e_1_2_7_9_2', 'first-page': '1706', 'volume-title': 'Enceclopedia of Computational Chemistry', 'author': 'Cremer D.', 'year': '1998'} / Enceclopedia of Computational Chemistry by Cremer D. (1998)
  9. {'volume-title': 'Essentials of Computational Chemistry', 'year': '2002', 'author': 'Cramer C. J.', 'key': 'e_1_2_7_10_2'} / Essentials of Computational Chemistry by Cramer C. J. (2002)
  10. 10.1063/1.1569242
  11. {'key': 'e_1_2_7_12_2', 'first-page': '3073', 'volume-title': 'Encyclopedia of Computational Chemistry', 'author': 'Frenking G.', 'year': '1998'} / Encyclopedia of Computational Chemistry by Frenking G. (1998)
  12. 10.1063/1.430878
  13. 10.1002/qua.560100802
  14. 10.1080/002689700417538 / Mol Phys by He Y. (2000)
  15. 10.1007/BF00698753 / Theor Chim Acta by Knowles P. J. (1985)
  16. 10.1063/1.455107
  17. Using reasonable integral neglect thresholds our integral‐direct RI‐MP3 algorithm shows an improvedNscaling behavior with system size even with nontrivial (TZVP) AO basis sets.
  18. 10.1080/00268979909483008
  19. 10.1063/1.1330207
  20. 10.1016/0009-2614(93)89151-7
  21. 10.1007/s002140050269
  22. 10.1002/qua.560140109
  23. {'volume-title': 'TURBOMOLE', 'year': '2003', 'author': 'Ahlrichs R.', 'key': 'e_1_2_7_24_2'} / TURBOMOLE by Ahlrichs R. (2003)
  24. 10.1063/1.453520
  25. 10.1016/S0009-2614(89)87395-6
  26. {'volume-title': 'RICC: A coupled‐cluster program using the RI approximation', 'year': '2002', 'author': 'Grimme S.', 'key': 'e_1_2_7_27_2'} / RICC: A coupled‐cluster program using the RI approximation by Grimme S. (2002)
  27. 10.1063/1.464913
  28. 10.1021/j100096a001
  29. 10.1063/1.467146
  30. 10.1063/1.456153
  31. 10.1063/1.473863
  32. 10.1063/1.1445115
  33. {'volume-title': 'Gaussian 98', 'author': 'Frisch M. J.', 'key': 'e_1_2_7_34_2'} / Gaussian 98 by Frisch M. J.
  34. 10.1063/1.1321306
  35. NIST Standard Reference Database. Seehttp://webbook.nist.gov/chemistry/.
  36. 10.1021/ja00757a071
  37. 10.1002/1439-7641(20020215)3:2<207::AID-CPHC207>3.0.CO;2-# / Chem Phys Chem by Grimme S. (2002)
  38. 10.1016/S0009-2614(00)00554-6
  39. The raw QMC results of 48 kcal/mol for this quantity has been corrected for the errorness HF geometry which artificially stabilizes the bowl compared to the cage. For details see ref. 37.
  40. 10.1063/1.457005
  41. 10.1063/1.476993
  42. 10.1063/1.461031 / J Chem Phys by Park C. (1991)
  43. 10.1007/BF01113730
  44. 10.1021/ja9803355
  45. 10.1021/ja00208a006
  46. The basis sets are available from the TURBOMOLE homepagehttp://www.turbomole.comvia FTP Server Button (in the subdirectories basen jbasen and cbasen).
  47. 10.1007/BF01114537 / Theor Chim Acta by Andrae D. (1999)
Dates
Type When
Created 22 years ago (Aug. 22, 2003, 9:38 a.m.)
Deposited 1 year, 11 months ago (Sept. 28, 2023, 2:53 p.m.)
Indexed 4 months ago (May 3, 2025, 5:43 p.m.)
Issued 22 years, 1 month ago (July 30, 2003)
Published 22 years, 1 month ago (July 30, 2003)
Published Online 22 years, 1 month ago (July 30, 2003)
Published Print 21 years, 11 months ago (Oct. 1, 2003)
Funders 1
  1. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG

@article{Grimme_2003, title={Improved third‐order Møller–Plesset perturbation theory}, volume={24}, ISSN={1096-987X}, url={http://dx.doi.org/10.1002/jcc.10320}, DOI={10.1002/jcc.10320}, number={13}, journal={Journal of Computational Chemistry}, publisher={Wiley}, author={Grimme, Stefan}, year={2003}, month=jul, pages={1529–1537} }