Abstract
AbstractBased on a partitioning of the total correlation energy into contributions from parallel‐ and antiparallel‐spin pairs of electrons, a modified third‐order Møller–Plesset (MP) perturbation theory is developed. The method, termed SCS–MP3 (SCS for spin‐component‐scaled) continues previous work on an improved version of MP2 (S. Grimme, J Chem Phys 2003, 118, 9095). A benchmark set of 32 isogyric reaction energies, 11 atomization energies, and 11 stretched geometries is used to assess to performance of the model in comparison to the standard quantum chemical approaches MP2, MP3, and QCISD(T). It is found, that the new method performs significantly better than usual MP2/MP3 and even outperforms the more costly QCISD method. Opposite to the usual MP series, the SCS third‐order correction uniformly improves the results. Dramatic enhancements are especially observed for the more difficult atomization energies, some of the stretched geometries, and reaction and ionization energies involving transition metal compounds where the method seems to be competitive or even superior to the widely used density functional approaches. Further tests performed for other complex systems (biradicals, C20 isomers, transition states) demonstrate that the SCS–MP3 model yields often results of QCISD(T) accuracy. The uniformity with which the new approach improves for very different correlation problems indicates significant robustness, and suggests it as a valuable quantum chemical method of general use. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1529–1537, 2003
References
47
Referenced
118
10.1002/9781119019572
10.1021/jp953749i
10.1002/cphc.200390006
10.1063/1.481544
{'volume-title': 'Density‐Functional Theory of Atoms and Molecules', 'year': '1989', 'author': 'Parr R. G.', 'key': 'e_1_2_7_6_2'}
/ Density‐Functional Theory of Atoms and Molecules by Parr R. G. (1989){'volume-title': "A Chemist's Guide to Density Functional Theory", 'year': '2000', 'author': 'Koch W.', 'key': 'e_1_2_7_7_2'}
/ A Chemist's Guide to Density Functional Theory by Koch W. (2000)10.1103/PhysRev.46.618
{'key': 'e_1_2_7_9_2', 'first-page': '1706', 'volume-title': 'Enceclopedia of Computational Chemistry', 'author': 'Cremer D.', 'year': '1998'}
/ Enceclopedia of Computational Chemistry by Cremer D. (1998){'volume-title': 'Essentials of Computational Chemistry', 'year': '2002', 'author': 'Cramer C. J.', 'key': 'e_1_2_7_10_2'}
/ Essentials of Computational Chemistry by Cramer C. J. (2002)10.1063/1.1569242
{'key': 'e_1_2_7_12_2', 'first-page': '3073', 'volume-title': 'Encyclopedia of Computational Chemistry', 'author': 'Frenking G.', 'year': '1998'}
/ Encyclopedia of Computational Chemistry by Frenking G. (1998)10.1063/1.430878
10.1002/qua.560100802
10.1080/002689700417538
/ Mol Phys by He Y. (2000)10.1007/BF00698753
/ Theor Chim Acta by Knowles P. J. (1985)10.1063/1.455107
- Using reasonable integral neglect thresholds our integral‐direct RI‐MP3 algorithm shows an improvedNscaling behavior with system size even with nontrivial (TZVP) AO basis sets.
10.1080/00268979909483008
10.1063/1.1330207
10.1016/0009-2614(93)89151-7
10.1007/s002140050269
10.1002/qua.560140109
{'volume-title': 'TURBOMOLE', 'year': '2003', 'author': 'Ahlrichs R.', 'key': 'e_1_2_7_24_2'}
/ TURBOMOLE by Ahlrichs R. (2003)10.1063/1.453520
10.1016/S0009-2614(89)87395-6
{'volume-title': 'RICC: A coupled‐cluster program using the RI approximation', 'year': '2002', 'author': 'Grimme S.', 'key': 'e_1_2_7_27_2'}
/ RICC: A coupled‐cluster program using the RI approximation by Grimme S. (2002)10.1063/1.464913
10.1021/j100096a001
10.1063/1.467146
10.1063/1.456153
10.1063/1.473863
10.1063/1.1445115
{'volume-title': 'Gaussian 98', 'author': 'Frisch M. J.', 'key': 'e_1_2_7_34_2'}
/ Gaussian 98 by Frisch M. J.10.1063/1.1321306
- NIST Standard Reference Database. Seehttp://webbook.nist.gov/chemistry/.
10.1021/ja00757a071
10.1002/1439-7641(20020215)3:2<207::AID-CPHC207>3.0.CO;2-#
/ Chem Phys Chem by Grimme S. (2002)10.1016/S0009-2614(00)00554-6
- The raw QMC results of 48 kcal/mol for this quantity has been corrected for the errorness HF geometry which artificially stabilizes the bowl compared to the cage. For details see ref. 37.
10.1063/1.457005
10.1063/1.476993
10.1063/1.461031
/ J Chem Phys by Park C. (1991)10.1007/BF01113730
10.1021/ja9803355
10.1021/ja00208a006
- The basis sets are available from the TURBOMOLE homepagehttp://www.turbomole.comvia FTP Server Button (in the subdirectories basen jbasen and cbasen).
10.1007/BF01114537
/ Theor Chim Acta by Andrae D. (1999)
Dates
Type | When |
---|---|
Created | 22 years ago (Aug. 22, 2003, 9:38 a.m.) |
Deposited | 1 year, 11 months ago (Sept. 28, 2023, 2:53 p.m.) |
Indexed | 4 months ago (May 3, 2025, 5:43 p.m.) |
Issued | 22 years, 1 month ago (July 30, 2003) |
Published | 22 years, 1 month ago (July 30, 2003) |
Published Online | 22 years, 1 month ago (July 30, 2003) |
Published Print | 21 years, 11 months ago (Oct. 1, 2003) |
Funders
1
Deutsche Forschungsgemeinschaft
10.13039/501100001659
Region: Europe
gov (National government)
Labels
3
- German Research Association
- German Research Foundation
- DFG
@article{Grimme_2003, title={Improved third‐order Møller–Plesset perturbation theory}, volume={24}, ISSN={1096-987X}, url={http://dx.doi.org/10.1002/jcc.10320}, DOI={10.1002/jcc.10320}, number={13}, journal={Journal of Computational Chemistry}, publisher={Wiley}, author={Grimme, Stefan}, year={2003}, month=jul, pages={1529–1537} }