Crossref journal-article
Wiley
Engineering in Life Sciences (311)
Abstract

AbstractConventional anaerobic digestion based bioconversion processes produce biogas and have as such been widely applied for the production of renewable energy so far. An innovative technology, based on the use of microbial fuel cells, is considered as a new pathway for bioconversion processes towards electricity. In comparison with conventional anaerobic digestion, the microbial fuel cell technology holds some specific advantages, such as its applicability for the treatment of low concentration substrates at temperatures below 20 °C, where anaerobic digestion generally fails to function. This provides some specific application niches of the microbial fuel cell technology where it does not compete with but complements the anaerobic digestion technology. However, microbial fuel cells still face important limitations in terms of large‐scale application. The limitations involve the investment costs, upscale technical issues and the factors limiting the performance, both in terms of anodic and cathodic electron transfer. Research to render the microbial fuel cell technology more economically feasible and applicable should focus on reactor configuration, power density and the material costs.

Bibliography

Pham, T. H., Rabaey, K., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Boon, N., & Verstraete, W. (2006). Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology. Engineering in Life Sciences, 6(3), 285–292. Portico.

Authors 7
  1. T. H. Pham (first)
  2. K. Rabaey (additional)
  3. P. Aelterman (additional)
  4. P. Clauwaert (additional)
  5. L. De Schamphelaire (additional)
  6. N. Boon (additional)
  7. W. Verstraete (additional)
References 68 Referenced 320
  1. 10.1016/j.tibtech.2005.04.008
  2. 10.1016/j.tibtech.2004.07.001
  3. 10.2166/wst.2005.0498
  4. 10.1002/bit.260251203
  5. 10.1007/BF02197802
  6. 10.1021/es040468s
  7. 10.2166/wst.2005.0497 / Water Sci. Technol. / Integrated energy production and reduction of the environmental impact at alcohol distillery plants by van Haandel A. C. (2005)
  8. A. J. Bard L. R. Faulkner Electrochemical Methods: Fundamentals and Applications 2nd ed. John Wiley & Sons New York2001.
  9. 10.1111/j.1365-2672.1985.tb01423.x
  10. 10.1007/s002530050805
  11. 10.1016/S0043-1354(02)00199-9
  12. 10.1023/A:1008993029309
  13. {'key': 'e_1_2_1_14_2', 'first-page': '127', 'article-title': 'Direct electrode reaction of Fe(III)‐reducing bacterium', 'volume': '9', 'author': 'Kim B. H.', 'year': '1999', 'journal-title': 'Shewanella putrefaciens, J. Microbiol. Biotechnol.'} / Shewanella putrefaciens, J. Microbiol. Biotechnol. / Direct electrode reaction of Fe(III)‐reducing bacterium by Kim B. H. (1999)
  14. 10.1016/S0141-0229(01)00478-1
  15. 10.1128/AEM.70.9.5373-5382.2004
  16. 10.1128/AEM.69.3.1548-1555.2003
  17. 10.1038/nbt867
  18. 10.5012/bkcs.2004.25.6.813
  19. 10.1038/nbt716
  20. 10.1007/s00253-003-1412-6
  21. 10.1007/s00253-003-1314-7
  22. 10.1006/anae.2001.0399
  23. P. Aelterman K. Rabaey T. H. Pham N. Boon W. Verstraete Continuous electricity generation at high voltages and currents using stacked microbial fuel cells Environ. Sci. Technol.2005 accepted for publication.. (10.1021/es0525511)
  24. 10.2166/wst.2005.0561 / Water Sci. Technol. / Continuous microbial fuel cells convert carbohydrates to electricity by Rabaey K. (2005)
  25. 10.1023/A:1025484009367
  26. 10.1128/AEM.65.7.2912-2917.1999
  27. 10.1128/JB.181.8.2403-2410.1999
  28. 10.5012/bkcs.2003.24.4.437
  29. {'key': 'e_1_2_1_30_2', 'first-page': '178', 'article-title': 'Interception of the electron‐transport chain in bacteria with hydrophilic redox mediators: Selective improvement of the performance of biofuel cells with 2,6‐disulfonated thionine as mediator (Part 1)', 'volume': '5', 'author': 'Lithgow A. M.', 'year': '1986', 'journal-title': 'J. Chem. Res.'} / J. Chem. Res. / Interception of the electron‐transport chain in bacteria with hydrophilic redox mediators: Selective improvement of the performance of biofuel cells with 2,6‐disulfonated thionine as mediator (Part 1) by Lithgow A. M. (1986)
  30. 10.1002/jctb.280340103
  31. 10.1038/nature03661
  32. 10.1016/S0956-5663(02)00110-0
  33. 10.1111/j.1472-765X.2005.01742.x
  34. 10.1007/s00253-005-1915-4
  35. 10.1021/es0505447
  36. 10.1016/0960-1481(96)88439-4
  37. 10.1016/S1389-1723(99)80204-7
  38. 10.1002/bit.260220402
  39. 10.1016/S0273-1223(97)00268-0
  40. 10.2166/wst.1992.0167 / Water Sci. Technol. / Design and performance of pulsed anaerobic digesters by Stadlbauer E. A. (1992)
  41. 10.2166/wst.2001.0473 / Water Sci. Technol. / Solid waste digestors: process performance and practice for municipal solid waste digestion by Lissens G. (2001)
  42. M. Chiao K. B. Lam L. Lin Micromachined microbial fuel cells inProc. of the 16th IEEE International MEMS Conference Kyoto (Japan)2003.
  43. 10.1002/bit.10501
  44. 10.1021/es0499344
  45. 10.1007/BF00180650
  46. 10.1021/es034923g
  47. 10.1021/es050986i
  48. 10.1016/j.ijhydene.2003.10.011
  49. 10.1016/S0032-9592(03)00203-6
  50. 10.1023/A:1008950121308
  51. 10.1061/(ASCE)0733-9372(2001)127:2(179)
  52. {'key': 'e_1_2_1_53_2', 'first-page': '324', 'article-title': 'Improvement of cathode reaction of a mediatorless microbial fuel cell', 'volume': '14', 'author': 'Pham T. H.', 'year': '2004', 'journal-title': 'J. Microbiol. Biotechnol.'} / J. Microbiol. Biotechnol. / Improvement of cathode reaction of a mediatorless microbial fuel cell by Pham T. H. (2004)
  53. J. Larminie A. Dicks Fuel Cell Systems Explained John Wiley & Sons Chichester2000 37–60.
  54. 10.1023/A:1024984521699
  55. 10.1590/S0103-50532005000300006
  56. 10.1016/j.jelechem.2004.11.034
  57. {'issue': '5', 'key': 'e_1_2_1_58_2', 'first-page': '363', 'article-title': 'Study on the electrochemical properties of La1–xSrxNi1–yFeyO3 bifunctional oxygen electrodes', 'volume': '63', 'author': 'Song S. D.', 'year': '2005', 'journal-title': 'Acta Chim. Sin.'} / Acta Chim. Sin. / Study on the electrochemical properties of La1–xSrxNi1–yFeyO3 bifunctional oxygen electrodes by Song S. D. (2005)
  58. 10.1021/es050244p
  59. 10.2166/wst.1994.0373 / Water Sci. Technol. / Methanogenic granule development in full‐scale internal circulation reactors by Pereboom J. H. F. (1994)
  60. 10.1016/S0273-1223(97)00203-5
  61. 10.1023/A:1022807416773
  62. 10.1149/1.1813654
  63. 10.1016/S0013-4686(02)00009-9
  64. {'key': 'e_1_2_1_65_2', 'first-page': '507', 'article-title': 'Developing tendency of new materials in electrochemistry and electrochemical engineering', 'volume': '30', 'author': 'Liu Y. X.', 'year': '2001', 'journal-title': 'Rare Metal Mater. Eng.'} / Rare Metal Mater. Eng. / Developing tendency of new materials in electrochemistry and electrochemical engineering by Liu Y. X. (2001)
  65. 10.1128/AEM.69.9.5643-5647.2003
  66. 10.1007/s00253-003-1503-4
  67. 10.1021/es0480668
  68. 10.1016/S0956-5663(03)00272-0
Dates
Type When
Created 19 years, 2 months ago (June 29, 2006, 6:42 p.m.)
Deposited 1 year, 11 months ago (Sept. 13, 2023, 7:46 a.m.)
Indexed 22 hours, 49 minutes ago (Sept. 3, 2025, 6:09 a.m.)
Issued 19 years, 3 months ago (June 1, 2006)
Published 19 years, 3 months ago (June 1, 2006)
Published Online 19 years, 2 months ago (June 29, 2006)
Published Print 19 years, 3 months ago (June 1, 2006)
Funders 0

None

@article{Pham_2006, title={Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology}, volume={6}, ISSN={1618-2863}, url={http://dx.doi.org/10.1002/elsc.200620121}, DOI={10.1002/elsc.200620121}, number={3}, journal={Engineering in Life Sciences}, publisher={Wiley}, author={Pham, T. H. and Rabaey, K. and Aelterman, P. and Clauwaert, P. and De Schamphelaire, L. and Boon, N. and Verstraete, W.}, year={2006}, month=jun, pages={285–292} }