Crossref journal-article
Wiley
ChemPhysChem (311)
Abstract

AbstractModelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge in a computationally efficient way. However, challenges remain in its application. Recent literature has reported that large cell heights are required to reach convergence, which presents a serious computational cost. Furthermore, calculations of reaction energetics require costly iterations to tune the surface charge to the desired potential. In this work, we present a simple capacitor model of the interface that illuminates how to circumvent both of these challenges. We derive a correction to the energy for finite cell heights to obtain the large cell energies at no additional computational expense. We furthermore demonstrate that the reaction energetics determined at constant charge are easily mapped to those at constant potential, which eliminates the need to apply iterative schemes to tune the system to a constant potential. These developments together represent more than an order of magnitude reduction of the computational overhead required for the application of polarizable continuum models to surface electrochemistry.

Bibliography

Gauthier, J. A., Dickens, C. F., Ringe, S., & Chan, K. (2019). Practical Considerations for Continuum Models Applied to Surface Electrochemistry. ChemPhysChem, 20(22), 3074–3080. Portico.

Authors 4
  1. Joseph A. Gauthier (first)
  2. Colin F. Dickens (additional)
  3. Stefan Ringe (additional)
  4. Karen Chan (additional)
References 44 Referenced 58
  1. 10.1021/jp047349j
  2. 10.1103/PhysRevB.88.155427
  3. 10.1103/PhysRevB.73.115407
  4. 10.1063/1.1379327
  5. 10.1103/PhysRevB.73.165402
  6. 10.1039/c0cp01444c
  7. 10.1021/jp901091a
  8. 10.1021/ja1069272
  9. 10.1021/acs.jctc.6b00435
  10. 10.1021/jp802627s
  11. K. Mathew R. G. Hennig arXiv preprint arXiv:1601.03346 2016.
  12. 10.1063/1.4939125
  13. 10.1016/j.cattod.2012.04.055
  14. 10.1103/PhysRevB.86.075140
  15. 10.1103/PhysRevB.95.115423
  16. 10.1063/1.4976971
  17. 10.1063/1.2431809
  18. 10.1021/acs.jpclett.6b00382
  19. 10.1021/acs.jpclett.5b01043
  20. 10.1103/PhysRevLett.109.266101
  21. 10.1016/j.cplett.2008.10.024
  22. 10.1002/cssc.201800037
  23. 10.1021/acscatal.8b02793
  24. {'key': 'e_1_2_6_24_1', 'author': 'Van den Bossche M.', 'year': '2018', 'journal-title': 'J. Phys. Chem. C.'} / J. Phys. Chem. C. by Van den Bossche M. (2018)
  25. 10.1039/C5CP00946D
  26. 10.1021/acs.jpcc.6b01938
  27. 10.1039/C6CP04094B
  28. 10.1021/acs.jpclett.6b00358
  29. 10.1103/PhysRevB.47.558
  30. 10.1103/PhysRevB.54.11169
  31. 10.1016/0927-0256(96)00008-0
  32. {'key': 'e_1_2_6_32_1', 'first-page': '140', 'author': 'Mathew K.', 'year': '2014', 'journal-title': 'J. Chem. Phys.'} / J. Chem. Phys. by Mathew K. (2014)
  33. 10.1103/PhysRevB.59.1758
  34. 10.1103/PhysRevB.13.5188
  35. 10.1103/PhysRevB.59.7413
  36. 10.1103/PhysRevB.59.12301
  37. 10.1103/PhysRevB.90.245101
  38. 10.1088/0953-8984/21/39/395502
  39. 10.1063/1.3676407
  40. {'key': 'e_1_2_6_40_1', 'volume-title': 'Fuel Cell Science: Theory, Fundamentals, and Biocatalysis', 'author': 'Dabo I.', 'year': '2010'} / Fuel Cell Science: Theory, Fundamentals, and Biocatalysis by Dabo I. (2010)
  41. 10.1016/j.electacta.2013.12.115
  42. 10.1016/j.cattod.2012.04.023
  43. 10.1063/1.5054580
  44. 10.1021/jacs.8b10016
Dates
Type When
Created 6 years, 1 month ago (July 17, 2019, 10:06 p.m.)
Deposited 2 years ago (Aug. 28, 2023, 2:34 a.m.)
Indexed 3 weeks, 6 days ago (Aug. 6, 2025, 8:21 a.m.)
Issued 6 years ago (Aug. 14, 2019)
Published 6 years ago (Aug. 14, 2019)
Published Online 6 years ago (Aug. 14, 2019)
Published Print 5 years, 9 months ago (Nov. 19, 2019)
Funders 2
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
  2. Office of Science 10.13039/100006132

    Region: Americas

    gov (National government)

    Labels8
    1. U.S. DOE Office of Science
    2. DOE Office of Science
    3. DOE's Office of Science
    4. Department of Energy's (DOE's) Office of Science
    5. The DOE Office of Science
    6. U.S. Department of Energy Office of Science
    7. U.S. Dept. of Energy Office of Science
    8. SC
    Awards1
    1. DE-AC02-05CH11231

@article{Gauthier_2019, title={Practical Considerations for Continuum Models Applied to Surface Electrochemistry}, volume={20}, ISSN={1439-7641}, url={http://dx.doi.org/10.1002/cphc.201900536}, DOI={10.1002/cphc.201900536}, number={22}, journal={ChemPhysChem}, publisher={Wiley}, author={Gauthier, Joseph A. and Dickens, Colin F. and Ringe, Stefan and Chan, Karen}, year={2019}, month=aug, pages={3074–3080} }