Abstract
AbstractIn this study, we have developed a protocol for exploring the vast chemical space of possible perovskites and screening promising candidates. Furthermore, we examined the factors that affect the band gap energies of perovskites. The Goldschmidt tolerance factor and octahedral factor, which range from 0.98 to 1 and from 0.45 to 0.7, respectively, are used to filter only highly cubic perovskites that are stable at room temperature. After removing rare or radioactively unstable elements, quantum mechanical density functional theory calculations are performed on the remaining perovskites to assess whether their electronic properties such as band structure are suitable for solar cell applications. Similar calculations are performed on the Ruddlesden‐Popper phase. Furthermore, machine learning was utilized to assess the significance of input parameters affecting the band gap of the perovskites.
References
39
Referenced
31
10.1039/C7EE00757D
10.1021/jz4020162
10.1038/nature18306
-
J. E. Parrott Theoretical upper limit to the conversion efficiency of solar energy Vol. 21 1978.
(
10.1016/0038-092X(78)90025-7
) 10.1021/acs.nanolett.7b02146
10.1016/j.chempr.2017.02.015
10.1016/j.chempr.2017.02.004
10.1021/acs.chemmater.6b00847
10.1016/j.solmat.2015.12.025
10.1038/nnano.2015.230
10.1038/nmat4388
10.1038/nchem.2324
10.1021/jacs.5b03796
10.1039/C5TA00358J
10.1021/acs.jpcc.6b05068
10.3389/fmats.2016.00019
10.1016/j.physleta.2013.11.018
10.1021/acs.jpclett.7b00374
10.1002/9781119148739.ch4
/ Reviews in Computational Chemistry, Vol 29, Vol. 29 by Mueller T. (2016)10.1021/acs.chemmater.5b04107
10.1016/j.commatsci.2013.12.054
10.1016/j.jpcs.2015.06.022
10.1016/j.jssc.2013.05.012
10.1002/chem.201504279
- Neural Designer v. 2.90 Artelnics 2018.
10.1103/PhysRevB.93.115104
10.1524/zkri.220.5.567.65075
- Materials Studio v.5.0 Accelrys Software Inc. San Diego 2007.
10.1006/jcph.1996.5612
10.1103/PhysRevLett.77.3865
10.1039/C6NJ01783E
10.1038/ncomms15167
10.1103/PhysRevB.53.3764
10.1103/PhysRevB.16.1748
{'key': 'e_1_2_7_39_1', 'first-page': '843', 'volume': '14', 'author': 'Hennig P.', 'year': '2013', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. by Hennig P. (2013)
Dates
Type | When |
---|---|
Created | 7 years, 2 months ago (June 21, 2018, 4:07 p.m.) |
Deposited | 1 year, 11 months ago (Sept. 15, 2023, 10:33 p.m.) |
Indexed | 4 weeks ago (July 31, 2025, 11:55 p.m.) |
Issued | 7 years, 1 month ago (July 5, 2018) |
Published | 7 years, 1 month ago (July 5, 2018) |
Published Online | 7 years, 1 month ago (July 5, 2018) |
Published Print | 6 years, 10 months ago (Oct. 5, 2018) |
Funders
1
Georgia Institute of Technology
10.13039/100006778
Region: Americas
gov (Universities (academic only))
Labels
5
- Georgia Tech
- Georgia School of Technology
- GA Tech
- GIT
- GT
@article{Allam_2018, title={Density Functional Theory – Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden‐Popper Phases}, volume={19}, ISSN={1439-7641}, url={http://dx.doi.org/10.1002/cphc.201800382}, DOI={10.1002/cphc.201800382}, number={19}, journal={ChemPhysChem}, publisher={Wiley}, author={Allam, Omar and Holmes, Colin and Greenberg, Zev and Kim, Ki Chul and Jang, Seung Soon}, year={2018}, month=jul, pages={2559–2565} }