Crossref journal-article
Wiley
ChemPhysChem (311)
Abstract

AbstractGraphene, the thinnest two‐dimensional material in nature, has abundant distinctive properties, such as ultrahigh carrier mobility, superior thermal conductivity, very high surface‐to‐volume ratio, anomalous quantum Hall effect, and so on. Laterally confined, thin, and long strips of graphene, namely, graphene nanoribbons (GNRs), can open the bandgap in the semimetal and give it the potential to replace silicon in future electronics. Great efforts are devoted to achieving high‐quality GNRs with narrow widths and smooth edges. This minireview reports the latest progress in experimental and theoretical studies on GNR synthesis. Different methods of GNR synthesis—unzipping of carbon nanotubes (CNTs), cutting of graphene, and the direct synthesis of GNRs—are discussed, and their advantages and disadvantages are compared in detail. Current challenges and the prospects in this rapidly developing field are also addressed.

Bibliography

Ma, L., Wang, J., & Ding, F. (2012). Recent Progress and Challenges in Graphene Nanoribbon Synthesis. ChemPhysChem, 14(1), 47–54. Portico.

Authors 3
  1. Liang Ma (first)
  2. Jinlan Wang (additional)
  3. Feng Ding (additional)
References 89 Referenced 216
  1. 10.1126/science.1102896
  2. 10.1016/S1369-7021(06)71788-6
  3. 10.1038/nphys384
  4. 10.1038/nature04235
  5. 10.1038/nature04233
  6. 10.1038/nphys245
  7. 10.1126/science.1137201
  8. 10.1126/science.1125925
  9. 10.1016/j.ssc.2008.02.024
  10. 10.1103/PhysRevLett.100.016602
  11. 10.1021/nl0731872
  12. 10.1063/1.2907977
  13. 10.1126/science.1157996
  14. 10.1126/science.1156965
  15. 10.1038/nnano.2010.132
  16. 10.1103/PhysRevLett.97.216803
  17. 10.1021/nl0617033
  18. 10.1126/science.1150878
  19. 10.1103/PhysRevLett.100.206803
  20. 10.1103/PhysRevLett.98.206805
  21. 10.1016/j.physe.2007.06.020
  22. 10.1021/nl080583r
  23. 10.1007/s12274-008-8020-9
  24. 10.1021/ja101265r
  25. 10.1021/nl801316d
  26. 10.1021/ja710234t
  27. 10.1038/nature09211
  28. 10.1038/nature07919
  29. 10.1038/nature07872
  30. 10.1038/nature05180
  31. 10.1103/PhysRevB.75.064418
  32. 10.1103/PhysRevB.77.165427
  33. 10.1103/PhysRevLett.102.096601
  34. 10.1021/nn9003428
  35. 10.1063/1.2971187
  36. 10.1021/nn9004268
  37. 10.1088/0957-4484/22/18/185202
  38. 10.1021/nl0708922
  39. 10.1021/ja710407t
  40. 10.1038/nmat2378
  41. 10.1063/1.2718515
  42. 10.1103/PhysRevB.78.161407
  43. 10.1103/PhysRevB.79.235116
  44. 10.1103/PhysRevB.79.233404
  45. 10.1103/PhysRevB.78.161409
  46. 10.1103/PhysRevB.74.245413
  47. 10.1038/nature05545
  48. 10.1103/PhysRevLett.101.245501
  49. 10.1007/s12274-009-9015-x
  50. 10.1021/nl903278w
  51. 10.1021/jp110649m
  52. 10.1016/j.carbon.2010.03.063
  53. 10.1021/nl803585s
  54. 10.1021/nn102326c
  55. 10.1038/nnano.2010.54
  56. 10.1021/ja203860a
  57. 10.1039/c1nr10137d
  58. 10.1021/ja1101739
  59. 10.1016/j.apcata.2009.09.013
  60. 10.1016/j.carbon.2010.09.007
  61. 10.1021/nl901631z
  62. 10.1039/c1nr10483g
  63. 10.1021/nn201224k
  64. 10.1021/nl100240n
  65. 10.1021/nn901782g
  66. 10.1063/1.3170926
  67. 10.1039/c002719g
  68. 10.1103/PhysRevB.82.115440
  69. 10.1103/PhysRevLett.96.176101
  70. 10.1021/ja8094729
  71. 10.1021/jp103302w
  72. 10.1016/j.physleta.2010.10.020
  73. 10.1103/PhysRevB.83.195442
  74. 10.1063/1.3648105
  75. 10.1002/ange.201101022
  76. 10.1002/anie.201101022
  77. 10.1021/nl900531n
  78. 10.1038/nnano.2008.149
  79. 10.1007/s12274-010-1003-7
  80. 10.1021/nl8034509
  81. 10.1007/s12274-009-9073-0
  82. 10.1002/pssb.200982293
  83. 10.1021/nl900811r
  84. 10.1002/adma.200900942
  85. 10.1021/cm0630800
  86. 10.1021/ja903092k
  87. 10.1038/nnano.2010.192
  88. 10.1002/anie.201105920
  89. 10.1002/ange.201105920
Dates
Type When
Created 13 years, 3 months ago (May 21, 2012, 9:27 a.m.)
Deposited 1 year, 10 months ago (Oct. 10, 2023, 9:51 a.m.)
Indexed 21 minutes ago (Aug. 29, 2025, 4:38 p.m.)
Issued 13 years, 3 months ago (May 21, 2012)
Published 13 years, 3 months ago (May 21, 2012)
Published Online 13 years, 3 months ago (May 21, 2012)
Published Print 12 years, 7 months ago (Jan. 14, 2013)
Funders 0

None

@article{Ma_2012, title={Recent Progress and Challenges in Graphene Nanoribbon Synthesis}, volume={14}, ISSN={1439-7641}, url={http://dx.doi.org/10.1002/cphc.201200253}, DOI={10.1002/cphc.201200253}, number={1}, journal={ChemPhysChem}, publisher={Wiley}, author={Ma, Liang and Wang, Jinlan and Ding, Feng}, year={2012}, month=may, pages={47–54} }