Crossref journal-article
Wiley
ChemPhysChem (311)
Abstract

AbstractThe binding of 2‐amino‐5‐methylthiazole to the W191G cavity mutant of cytochrome c peroxidase is an ideal test case to investigate the entropic contribution to the binding free energy due to changes in receptor flexibility. The dynamic and thermodynamic role of receptor flexibility are studied by 50 ns‐long explicit‐solvent molecular dynamics simulations of three separate receptor ensembles: W191G binding a K+ ion, W191G–2a5mt complex with a closed 190–195 gating loop, and apo with an open loop. We employ a method recently proposed to estimate accurate absolute single‐molecule configurational entropies and their differences for systems undergoing conformational transitions. We find that receptor flexibility plays a generally underestimated role in protein–ligand binding (thermo)dynamics and that changes of receptor motional correlation determine such large entropy contributions.

Bibliography

Baron, R., & McCammon, J. A. (2008). (Thermo)dynamic Role of Receptor Flexibility, Entropy, and Motional Correlation in Protein–Ligand Binding. ChemPhysChem, 9(7), 983–988. Portico.

Authors 2
  1. Riccardo Baron (first)
  2. J. Andrew McCammon (additional)
References 57 Referenced 35
  1. {'key': 'e_1_2_6_1_2', 'volume-title': 'Molecular Foundations of Drug‐Receptor Interaction', 'author': 'Dean P. M.', 'year': '1987'} / Molecular Foundations of Drug‐Receptor Interaction by Dean P. M. (1987)
  2. 10.1002/ange.19941062306
  3. 10.1002/anie.199423751
  4. 10.1017/CBO9780511524837
  5. 10.1002/ange.19961082205
  6. 10.1002/anie.199625881
  7. 10.1002/(SICI)1521-3757(19990315)111:6<778::AID-ANGE778>3.0.CO;2-C
  8. 10.1002/(SICI)1521-3773(19990315)38:6<736::AID-ANIE736>3.0.CO;2-R
  9. {'key': 'e_1_2_6_6_2', 'volume-title': 'Drug‐Receptor Thermodynamics: Introduction and Applications', 'year': '2001'} / Drug‐Receptor Thermodynamics: Introduction and Applications (2001)
  10. 10.1002/1521-3757(20020802)114:15<2764::AID-ANGE2764>3.0.CO;2-I
  11. 10.1002/1521-3773(20020802)41:15<2644::AID-ANIE2644>3.0.CO;2-O
  12. 10.1126/science.1096361
  13. 10.1002/pro.5560040919
  14. 10.1038/nsb0796-626
  15. 10.1021/bi9708038
  16. 10.1006/jmbi.2001.5287
  17. 10.1016/j.jmb.2006.01.034
  18. 10.1021/bi700866x
  19. {'key': 'e_1_2_6_15_2', 'first-page': '171', 'volume': '16', 'author': 'Bosshard H. R.', 'year': '2001', 'journal-title': 'News Physiol. Sci.'} / News Physiol. Sci. by Bosshard H. R. (2001)
  20. 10.1016/S1367-5931(02)00341-1
  21. 10.1021/jm0341913
  22. {'key': 'e_1_2_6_18_2', 'volume-title': 'Thermodynamics', 'author': 'Fermi E.', 'year': '1936'} / Thermodynamics by Fermi E. (1936)
  23. {'key': 'e_1_2_6_19_2', 'volume-title': 'Fundamentals of Statistical and Thermal Physics', 'author': 'Reif F.', 'year': '1985'} / Fundamentals of Statistical and Thermal Physics by Reif F. (1985)
  24. In this work usage of the terms “flexibility” “dynamics” “thermodynamics” “single‐molecule” and “molecular” is based on their statistical mechanics definitions. Dynamics is related to phase‐space sampling. Thermodynamics concerns the sampled configurational space only that is configurations not momenta (see refs. [18  19]). For example different dynamics due to different degrees of freedom momenta and frequencies may still correspond to identical thermodynamic properties. Flexibility involves both aspects and generally refers to ensemble average properties only (e.g. mean‐square fluctuations of a molecular system). For a definition of single‐molecule and molecular entropy terms see ref. [35].
  25. 10.1021/ja00074a073
  26. 10.1016/S1367-5931(99)00008-3
  27. 10.1038/70008
  28. 10.1021/ar000079c
  29. 10.1002/cbic.200500010
  30. 10.1038/nature05959
  31. 10.1006/jmbi.1994.1430
  32. 10.1016/S0006-3495(97)78756-3
  33. 10.1021/ar950181n
  34. 10.1063/1.1636153
  35. 10.1016/S0006-3495(04)74084-9
  36. 10.1016/j.bbapap.2005.07.041
  37. 10.1021/jp046022f
  38. 10.1039/b608486a
  39. 10.1021/jp055888y
  40. {'key': 'e_1_2_6_36_2', 'first-page': '87', 'volume': '11', 'author': 'Baron R.', 'year': '2006', 'journal-title': 'Trends Phys. Chem.'} / Trends Phys. Chem. by Baron R. (2006)
  41. 10.1002/cphc.200600658
  42. 10.1073/pnas.0610494104
  43. 10.1002/ange.200502655
  44. 10.1002/anie.200502655
  45. 10.1006/jmbi.2001.5202
  46. 10.1002/prot.21180
  47. 10.1002/jcc.20580
  48. 10.1529/biophysj.106.081539
  49. 10.1021/jp061627s
  50. 10.1529/biophysj.107.0900157
  51. 10.1002/jcc.20303
  52. W. F. van Gunsteren S. R. Billeter A. A. Eising P. H. Hünenberger P. Krüger A. E. Mark W. R. P. Scott I. G. Tironi Biomolecular Simulation: The GROMOS96 Manual and User Guide vdf Hochschulverlag AG an der ETH Zurich/BIOMOS b.v. Groningen Zurich/Groningen 1996.
  53. 10.1002/jcc.20193
  54. 10.1021/j100384a009
  55. 10.1007/978-94-015-7658-1_21
  56. 10.1002/jcc.20071
  57. 10.1016/0022-2836(79)90308-5
Dates
Type When
Created 17 years, 4 months ago (April 16, 2008, 10:47 a.m.)
Deposited 1 year, 10 months ago (Oct. 10, 2023, 11:22 p.m.)
Indexed 1 year ago (Aug. 12, 2024, 7:12 a.m.)
Issued 17 years, 4 months ago (April 28, 2008)
Published 17 years, 4 months ago (April 28, 2008)
Published Online 17 years, 4 months ago (April 28, 2008)
Published Print 17 years, 3 months ago (May 16, 2008)
Funders 0

None

@article{Baron_2008, title={(Thermo)dynamic Role of Receptor Flexibility, Entropy, and Motional Correlation in Protein–Ligand Binding}, volume={9}, ISSN={1439-7641}, url={http://dx.doi.org/10.1002/cphc.200700857}, DOI={10.1002/cphc.200700857}, number={7}, journal={ChemPhysChem}, publisher={Wiley}, author={Baron, Riccardo and McCammon, J. Andrew}, year={2008}, month=apr, pages={983–988} }