Crossref journal-article
Wiley
ChemPhysChem (311)
Abstract

AbstractSilica‐supported titania powders with 50, 36, 13 and 4 wt % of TiO2 (TiO2‐50/SiO2, TiO2‐36/SiO2, TiO2‐13/SiO2 and TiO2‐4/SiO2) were prepared by hydrolysis of TiCl4 in the presence of silica, followed by calcination at 500 °C. The formation of TiOSi linkages was confirmed by diffuse reflectance infrared Fourier transform spectroscopy. Atomic force microscopy indicated the presence of titania crystals larger than 15 nm. All supported materials exhibited a blue‐shift of the TiO2 absorption edge, which was attributed to an electronic semiconductor support interaction. Bandgap energies of TiO2‐50/SiO2, TiO2‐36/SiO2, TiO2‐13/SiO2 and TiO24/SiO2 were measured to be 3.28, 3.36, 3.40 and 3.42 eV, respectively, as compared to 3.15 eV for unsupported TiO2. From these values, and from the quasi‐Fermi level of electrons, a high anodic shift of both the valence and the conduction band was estimated. X‐ray photoelectron spectroscopy (XPS) measurements of oxygen 1s‐ and titanium 2p‐binding energies confirmed the anodic shift of the band edges.

Bibliography

Gärtner, M., Dremov, V., Müller, P., & Kisch, H. (2005). Bandgap Widening of Titania through Semiconductor Support Interactions. ChemPhysChem, 6(4), 714–718. Portico.

Authors 4
  1. Marc Gärtner (first)
  2. Viatcheslav Dremov (additional)
  3. Paul Müller (additional)
  4. Horst Kisch (additional)
References 25 Referenced 64
  1. 10.1021/cr00017a013
  2. 10.1063/1.445676
  3. 10.1002/chem.19950010709
  4. 10.1021/jp004295e
  5. 10.1016/S1010-6030(02)00051-5
  6. 10.1002/1616-3028(20020805)12:8<483::AID-ADFM483>3.0.CO;2-K
  7. 10.1002/1521-3757(20011015)113:20<3942::AID-ANGE3942>3.0.CO;2-4
  8. 10.1002/1521-3773(20011015)40:20<3825::AID-ANIE3825>3.0.CO;2-D
  9. 10.1016/S1389-5567(00)00002-2
  10. 10.1016/0021-9517(91)90343-3
  11. 10.1021/jp981423e
  12. 10.1557/JMR.2001.0325
  13. 10.1006/jcat.1995.1118
  14. {'key': 'e_1_2_5_13_2', 'first-page': '123', 'volume': '21', 'author': 'Tauc J.', 'year': '1966', 'journal-title': 'J. Phys. Soc. Jap., Suppl.'} / J. Phys. Soc. Jap., Suppl. by Tauc J. (1966)
  15. 10.1021/ja954172l
  16. 10.1021/j100005a019
  17. We prefer to use the term “quasi‐Fermi level of electrons” instead of “flatband potential”[17]. Since the potential is measured upon irradiation and the particle size is smaller than the expected depletion layer band bending can be excluded.
  18. 10.1016/0360-3199(94)00105-9
  19. 10.1002/jlac.197319730220
  20. 10.1002/jlac.197319730221
  21. 10.1016/0039-6028(94)90837-0
  22. 10.1016/S0021-9517(02)00104-5
  23. C. Damm G. Israel M. Gärtner H. Kisch unpublished results.
  24. 10.1016/S1010-6030(03)00231-4
  25. 10.1016/S0368-2048(99)00089-4
Dates
Type When
Created 20 years, 5 months ago (March 14, 2005, 6:47 p.m.)
Deposited 1 year, 10 months ago (Oct. 9, 2023, 11:58 p.m.)
Indexed 1 year, 1 month ago (July 22, 2024, 5:57 p.m.)
Issued 20 years, 4 months ago (April 11, 2005)
Published 20 years, 4 months ago (April 11, 2005)
Published Online 20 years, 4 months ago (April 11, 2005)
Published Print 20 years, 4 months ago (April 15, 2005)
Funders 0

None

@article{G_rtner_2005, title={Bandgap Widening of Titania through Semiconductor Support Interactions}, volume={6}, ISSN={1439-7641}, url={http://dx.doi.org/10.1002/cphc.200400185}, DOI={10.1002/cphc.200400185}, number={4}, journal={ChemPhysChem}, publisher={Wiley}, author={Gärtner, Marc and Dremov, Viatcheslav and Müller, Paul and Kisch, Horst}, year={2005}, month=apr, pages={714–718} }