Abstract
AbstractThe mechanism of the H/D exchange reaction in alkane/hydrogen mixtures on silica‐supported zirconium hydride was investigated by a modelling study using density functional theory (DFT) calculations. The electronic activation enthalpy (ΔH${^{\ne }_{\rm elec}}$) for the CH bond activation step (TS3) was calculated to be around 92 kJ mol−1, whereas it would be 258 kJ mol−1 for a direct exchange process (TS1, also called the kite TS). These data clearly speak in favour of the former as a mechanism for CH bond scrambling. Moreover, the calculated enthalpy of activation (ΔH${^{\ne }_{{\rm elec}}}$) for H/D exchange in H2/D2 mixtures (TS2) is 33.5 kJ mol−1, which shows that this reaction is much faster than the H/D scrambling in alkane/H2 mixtures, as shown experimentally. Additionally, the calculated activation entropies (For TS1–4, ΔS${^{\ne }_{{\rm tot}}}$ ranges between −129 and −174 J mol−1 K−1) are very negative. Although the calculated activation entropies are also in full agreement with experimental data (ΔS${^{\ne }_{{\rm exp}}}$=−113 J mol−1 K−1), overall, the calculated activation enthalpies are much higher than the experimental ones. This suggests that the actual catalyst is probably more electrophilic than the model chosen for the calculations.
References
53
Referenced
34
- For some examples of exchange processes (alkyl/hydride alkyl/alkyl or hydride/hydride) on molecular complexes see for example:
10.1021/ja00520a023
10.1039/C39830000276
10.1021/ja00359a023
10.1021/ar00110a004
10.1021/cr00068a002
10.1021/ja00312a052
10.1021/ja00261a009
10.1021/ja00263a012
10.1021/ja00235a031
10.1021/ar00148a004
10.1021/ja00220a053
10.1021/ja00158a017
10.1021/ja00160a041
10.1021/om00033a027
- For previous theoretical investigations of σ‐bond metathesis processes see:
10.1021/ja00314a009
10.1021/ja00275a015
10.1021/ja00202a043
10.1021/om00116a024
{'key': 'e_1_2_3_21_2', 'first-page': '741', 'volume': '15', 'author': 'Folga E.', 'year': '1991', 'journal-title': 'New. J. Chem.'}
/ New. J. Chem. by Folga E. (1991)10.1139/v92-047
10.1021/ja00055a037
{'key': 'e_1_2_3_24_2', 'first-page': '691', 'volume': '19', 'author': 'Deelman B. J.', 'year': '1995', 'journal-title': 'New. J. Chem.'}
/ New. J. Chem. by Deelman B. J. (1995)10.1016/S0022-328X(99)00686-5
10.1021/jp994056v
10.1021/ja0033483
10.1023/A:1015076629218
10.1039/b107698c
10.1039/c39910001589
10.1016/0304-5102(92)80253-D
10.1039/DT9940001153
10.1126/science.271.5251.966
10.1021/om0007926
10.1016/0926-860X(96)00120-2
10.1016/0301-0104(73)80059-X
10.1016/0021-9991(92)90277-6
- ADF release 2.3 Department of Theoretical Chemistry Vrije Universiteit Amsterdam. ADF 1999 E. J. Baerends A. Bèrces C. Bo P. M. Boerrigter L. Cavallo L. Deng R. M. Dickson D. E. Ellis L. Fan T. H. Fischer C. Fonseca Guerra S. J. A. van Gisbergen J. A. Groeneveld O. V. Gritsenko F. E. Harris P. van den Hoek H. Jacobsen G. van Kessel F. Kootstra E. van Lenthe V. P. Osinga P. H. T. Philipsen D. Post C. C. Pye W. Ravenek P. Ros P. R. T. Schipper G. Schreckenbach J. G. Snijders M. Sola D. Swerhone G. te Velde P. Vernooijs L. Versluis O. Visser E. van Wezenbeek G. Wiesenekker S. K. Wolff T. K. Woo T. Ziegler.
{'key': 'e_1_2_3_42_2', 'volume-title': "Electronic Structure of Solids '91", 'author': 'Perdew J. P.', 'year': '1991'}
/ Electronic Structure of Solids '91 by Perdew J. P. (1991)- Using GAUSSIAN 98 (Gaussian 98: (Revision A.7) M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman V. G. Zakrzewski J. A. Montgomery R. E. Stratmann J. C. Burant S. Dapprich J. M. Millam A. D. Daniels K. N. Kudin M. C. Strain O. Farkas J. Tomasi V. Barone M. Cossi R. Cammi B. Mennucci C. Pomelli C. Adamo S. Clifford J. Ochterski G. A. Petersson P. Y. Ayala Q. Cui K. Morokuma D. K. Malick A. D. Rabuck K. Raghavachari J. B. Foresman J. Cioslowski J. V. Ortiz B. B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. Gomperts R. L. Martin D. J. Fox T. Keith M. A. Al‐Laham C. Y. Peng A. Nanayakkara C. Gonzalez M. Challacombe P. M. W. Gill B. G. Johnson W. Chen M. W. Wong J. L. Andres M. Head‐Gordon E. S. Replogle J. A. Pople Gaussian Inc. Pittsburgh PA 1998) with PW91 or B3LYP functionals we were able to locate the same ground state structure and found similar reaction energies for ZrH+CH4→ZrCH3+H2(see Supporting Information).
{'key': 'e_1_2_3_44_2', 'volume': '1', 'author': 'Orpen A. G.', 'year': '1989', 'journal-title': 'J. Chem. Soc. Dalton Trans.'}
/ J. Chem. Soc. Dalton Trans. by Orpen A. G. (1989)- These calculated values are close to those calculated from bond dissociation energies (BDE) and bond dissociation enthalpies (BDH) for H2 CH4 (Zr‐H) and (Zr‐Me) for which the CH bond activation should have an endothermic enthalpy of reaction in the 54–79 kJ mol−1range. For reviews see:
10.1021/cr00102a004
{'key': 'e_1_2_3_47_2', 'volume-title': 'Organometallic Compounds', 'author': 'Energetics Bonding'}
/ Organometallic Compounds by Energetics Bonding10.1021/ja00231a020
10.1021/ja00158a017
- For an experimental work and discussions on the relative energies of transition states for σ‐bond metathesis pathways see ref. [1 i].
- A conceptual approach on the reason for the different energies for the various types of TS has also been discussed see ref. [2 m].
10.1016/0021-9797(76)90186-7
- For example using [Cl2ZrH+] as a simple “extreme” model which is a fully cationic system shows that there is in that case no activation barrier for H2/D2exchange via [Cl2ZrH3+] as a transition state. This confirms the presence of a more electrophilic system on the surface. It is also possible to propose a zirconium dihydride species see ref. [2 l] and references cited therein.
Dates
Type | When |
---|---|
Created | 21 years, 2 months ago (June 28, 2004, 5:03 p.m.) |
Deposited | 1 year, 10 months ago (Oct. 9, 2023, 4:07 p.m.) |
Indexed | 1 year, 8 months ago (Dec. 13, 2023, 9:05 a.m.) |
Issued | 22 years, 3 months ago (June 6, 2003) |
Published | 22 years, 3 months ago (June 6, 2003) |
Published Online | 22 years, 3 months ago (June 6, 2003) |
Published Print | 22 years, 2 months ago (June 16, 2003) |
@article{Cop_ret_2003, title={Discrimination of σ‐Bond Metathesis Pathways in H/D Exchange Reactions on [(SiO)3ZrH]: A Density Functional Theory Study}, volume={4}, ISSN={1439-7641}, url={http://dx.doi.org/10.1002/cphc.200200495}, DOI={10.1002/cphc.200200495}, number={6}, journal={ChemPhysChem}, publisher={Wiley}, author={Copéret, Christophe and Grouiller, Annie and Basset, Jean‐Marie and Chermette, Henry}, year={2003}, month=jun, pages={608–611} }