Crossref journal-article
Wiley
ChemPhysChem (311)
Abstract

AbstractThe mechanism of the H/D exchange reaction in alkane/hydrogen mixtures on silica‐supported zirconium hydride was investigated by a modelling study using density functional theory (DFT) calculations. The electronic activation enthalpy (ΔH${^{\ne }_{\rm elec}}$) for the CH bond activation step (TS3) was calculated to be around 92 kJ mol−1, whereas it would be 258 kJ mol−1 for a direct exchange process (TS1, also called the kite TS). These data clearly speak in favour of the former as a mechanism for CH bond scrambling. Moreover, the calculated enthalpy of activation (ΔH${^{\ne }_{{\rm elec}}}$) for H/D exchange in H2/D2 mixtures (TS2) is 33.5 kJ mol−1, which shows that this reaction is much faster than the H/D scrambling in alkane/H2 mixtures, as shown experimentally. Additionally, the calculated activation entropies (For TS1–4, ΔS${^{\ne }_{{\rm tot}}}$ ranges between −129 and −174 J mol−1 K−1) are very negative. Although the calculated activation entropies are also in full agreement with experimental data (ΔS${^{\ne }_{{\rm exp}}}$=−113 J mol−1 K−1), overall, the calculated activation enthalpies are much higher than the experimental ones. This suggests that the actual catalyst is probably more electrophilic than the model chosen for the calculations.

Bibliography

Copéret, C., Grouiller, A., Basset, J., & Chermette, H. (2003). Discrimination of σ‐Bond Metathesis Pathways in H/D Exchange Reactions on [(SiO)3ZrH]: A Density Functional Theory Study. ChemPhysChem, 4(6), 608–611. Portico.

Authors 4
  1. Christophe Copéret (first)
  2. Annie Grouiller (additional)
  3. Jean‐Marie Basset (additional)
  4. Henry Chermette (additional)
References 53 Referenced 34
  1. For some examples of exchange processes (alkyl/hydride alkyl/alkyl or hydride/hydride) on molecular complexes see for example:
  2. 10.1021/ja00520a023
  3. 10.1039/C39830000276
  4. 10.1021/ja00359a023
  5. 10.1021/ar00110a004
  6. 10.1021/cr00068a002
  7. 10.1021/ja00312a052
  8. 10.1021/ja00261a009
  9. 10.1021/ja00263a012
  10. 10.1021/ja00235a031
  11. 10.1021/ar00148a004
  12. 10.1021/ja00220a053
  13. 10.1021/ja00158a017
  14. 10.1021/ja00160a041
  15. 10.1021/om00033a027
  16. For previous theoretical investigations of σ‐bond metathesis processes see:
  17. 10.1021/ja00314a009
  18. 10.1021/ja00275a015
  19. 10.1021/ja00202a043
  20. 10.1021/om00116a024
  21. {'key': 'e_1_2_3_21_2', 'first-page': '741', 'volume': '15', 'author': 'Folga E.', 'year': '1991', 'journal-title': 'New. J. Chem.'} / New. J. Chem. by Folga E. (1991)
  22. 10.1139/v92-047
  23. 10.1021/ja00055a037
  24. {'key': 'e_1_2_3_24_2', 'first-page': '691', 'volume': '19', 'author': 'Deelman B. J.', 'year': '1995', 'journal-title': 'New. J. Chem.'} / New. J. Chem. by Deelman B. J. (1995)
  25. 10.1016/S0022-328X(99)00686-5
  26. 10.1021/jp994056v
  27. 10.1021/ja0033483
  28. 10.1023/A:1015076629218
  29. 10.1039/b107698c
  30. 10.1039/c39910001589
  31. 10.1016/0304-5102(92)80253-D
  32. 10.1039/DT9940001153
  33. 10.1126/science.271.5251.966
  34. 10.1021/om0007926
  35. 10.1016/0926-860X(96)00120-2
  36. 10.1016/0301-0104(73)80059-X
  37. 10.1016/0021-9991(92)90277-6
  38. ADF release 2.3 Department of Theoretical Chemistry Vrije Universiteit Amsterdam. ADF 1999 E. J. Baerends A. Bèrces C. Bo P. M. Boerrigter L. Cavallo L. Deng R. M. Dickson D. E. Ellis L. Fan T. H. Fischer C. Fonseca Guerra S. J. A. van Gisbergen J. A. Groeneveld O. V. Gritsenko F. E. Harris P. van den Hoek H. Jacobsen G. van Kessel F. Kootstra E. van Lenthe V. P. Osinga P. H. T. Philipsen D. Post C. C. Pye W. Ravenek P. Ros P. R. T. Schipper G. Schreckenbach J. G. Snijders M. Sola D. Swerhone G. te Velde P. Vernooijs L. Versluis O. Visser E. van Wezenbeek G. Wiesenekker S. K. Wolff T. K. Woo T. Ziegler.
  39. {'key': 'e_1_2_3_42_2', 'volume-title': "Electronic Structure of Solids '91", 'author': 'Perdew J. P.', 'year': '1991'} / Electronic Structure of Solids '91 by Perdew J. P. (1991)
  40. Using GAUSSIAN 98 (Gaussian 98: (Revision A.7) M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman V. G. Zakrzewski J. A. Montgomery R. E. Stratmann J. C. Burant S. Dapprich J. M. Millam A. D. Daniels K. N. Kudin M. C. Strain O. Farkas J. Tomasi V. Barone M. Cossi R. Cammi B. Mennucci C. Pomelli C. Adamo S. Clifford J. Ochterski G. A. Petersson P. Y. Ayala Q. Cui K. Morokuma D. K. Malick A. D. Rabuck K. Raghavachari J. B. Foresman J. Cioslowski J. V. Ortiz B. B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. Gomperts R. L. Martin D. J. Fox T. Keith M. A. Al‐Laham C. Y. Peng A. Nanayakkara C. Gonzalez M. Challacombe P. M. W. Gill B. G. Johnson W. Chen M. W. Wong J. L. Andres M. Head‐Gordon E. S. Replogle J. A. Pople Gaussian Inc. Pittsburgh PA 1998) with PW91 or B3LYP functionals we were able to locate the same ground state structure and found similar reaction energies for ZrH+CH4→ZrCH3+H2(see Supporting Information).
  41. {'key': 'e_1_2_3_44_2', 'volume': '1', 'author': 'Orpen A. G.', 'year': '1989', 'journal-title': 'J. Chem. Soc. Dalton Trans.'} / J. Chem. Soc. Dalton Trans. by Orpen A. G. (1989)
  42. These calculated values are close to those calculated from bond dissociation energies (BDE) and bond dissociation enthalpies (BDH) for H2 CH4 (Zr‐H) and (Zr‐Me) for which the CH bond activation should have an endothermic enthalpy of reaction in the 54–79 kJ mol−1range. For reviews see:
  43. 10.1021/cr00102a004
  44. {'key': 'e_1_2_3_47_2', 'volume-title': 'Organometallic Compounds', 'author': 'Energetics Bonding'} / Organometallic Compounds by Energetics Bonding
  45. 10.1021/ja00231a020
  46. 10.1021/ja00158a017
  47. For an experimental work and discussions on the relative energies of transition states for σ‐bond metathesis pathways see ref. [1 i].
  48. A conceptual approach on the reason for the different energies for the various types of TS has also been discussed see ref. [2 m].
  49. 10.1016/0021-9797(76)90186-7
  50. For example using [Cl2ZrH+] as a simple “extreme” model which is a fully cationic system shows that there is in that case no activation barrier for H2/D2exchange via [Cl2ZrH3+] as a transition state. This confirms the presence of a more electrophilic system on the surface. It is also possible to propose a zirconium dihydride species see ref. [2 l] and references cited therein.
Dates
Type When
Created 21 years, 2 months ago (June 28, 2004, 5:03 p.m.)
Deposited 1 year, 10 months ago (Oct. 9, 2023, 4:07 p.m.)
Indexed 1 year, 8 months ago (Dec. 13, 2023, 9:05 a.m.)
Issued 22 years, 3 months ago (June 6, 2003)
Published 22 years, 3 months ago (June 6, 2003)
Published Online 22 years, 3 months ago (June 6, 2003)
Published Print 22 years, 2 months ago (June 16, 2003)
Funders 0

None

@article{Cop_ret_2003, title={Discrimination of σ‐Bond Metathesis Pathways in H/D Exchange Reactions on [(SiO)3ZrH]: A Density Functional Theory Study}, volume={4}, ISSN={1439-7641}, url={http://dx.doi.org/10.1002/cphc.200200495}, DOI={10.1002/cphc.200200495}, number={6}, journal={ChemPhysChem}, publisher={Wiley}, author={Copéret, Christophe and Grouiller, Annie and Basset, Jean‐Marie and Chermette, Henry}, year={2003}, month=jun, pages={608–611} }