Crossref journal-article
Wiley
ChemMedChem (311)
Abstract

AbstractThe role of activity cliffs in drug discovery projects is certainly two‐edged: on the one hand, they often lead to the failure of QSAR modeling techniques; on the other, they are highly valuable for identifying key aspects of SARs. In the presence of activity cliffs the results of purely ligand‐based QSAR approaches often remain puzzling, and the resulting models have limited predictive power. Herein we present a new approach for the identification of structure‐based activity cliffs (ISAC). It uses the valuable information of activity cliffs in a structure‐based design scenario by analyzing interaction energies of protein–ligand complexes. Using the relative frequency at which a protein atom is involved in activity cliff events, we introduce a novel visualization of hot spots in the active site of a protein. The ISAC approach supports the medicinal chemist in elucidating the key interacting atoms of the binding site and facilitates the development of pharmacophore hypotheses. The hot spot visualization can be applied to small data sets in early project phases as well as in the lead optimization process. Based on the ISAC approach, we developed a method to derive target‐specific scoring functions and pharmacophore constraints, which were validated on independent external data sets in virtual screening experiments. The activity‐cliff‐based approach shows an improved enrichment over the generic empirical scoring function for various protein targets in the validation set.

Bibliography

Seebeck, B., Wagener, M., & Rarey, M. (2011). From Activity Cliffs to Target‐Specific Scoring Models and Pharmacophore Hypotheses. ChemMedChem, 6(9), 1630–1639. Portico.

Authors 3
  1. Birte Seebeck (first)
  2. Markus Wagener (additional)
  3. Matthias Rarey (additional)
References 31 Referenced 43
  1. 10.1021/ci060117s
  2. 10.1021/jm020155c
  3. 10.1021/ci100091e
  4. 10.1007/978-1-60761-839-3_3
  5. 10.1021/jm070845m
  6. 10.1021/jm0705713
  7. 10.1021/ci900243a
  8. 10.1021/ci7004093
  9. 10.1021/ci049870g
  10. 10.1021/jm030331x
  11. 10.1021/ci800466n
  12. 10.1021/ci900043r
  13. 10.1021/jm00014a020
  14. 10.1002/prot.22579
  15. 10.1021/jm990609e
  16. 10.1016/j.drudis.2009.03.013
  17. 10.1006/jmbi.1996.0477
  18. 10.1007/BF00126743
  19. 10.1021/jm801444x
  20. 10.1021/jm0608356
  21. 10.1016/S0960-894X(03)00302-0
  22. 10.1016/j.bmcl.2006.01.028
  23. Molecular Operating Environment (MOE) Chemical Computing Group Inc. Montreal QC (Canada).
  24. {'key': 'e_1_2_6_24_2', 'first-page': '63', 'volume-title': 'Virtual Screening: An Alternative or Complement to High‐Throughput Screening', 'author': 'Rarey M.'} / Virtual Screening: An Alternative or Complement to High‐Throughput Screening by Rarey M.
  25. 10.1016/S0021-9258(18)54894-8
  26. 10.1021/ja00066a004
  27. 10.1038/nature01370
  28. {'key': 'e_1_2_6_28_2', 'first-page': '300', 'volume': '3', 'author': 'Rarey M.', 'year': '1995', 'journal-title': 'Proc. Int. Conf. Intell. Syst. Mol. Biol.'} / Proc. Int. Conf. Intell. Syst. Mol. Biol. by Rarey M. (1995)
  29. 10.1006/jmbi.2001.5062
  30. 10.1021/ci049714
  31. 10.1023/A:1016399411208
Dates
Type When
Created 14 years, 1 month ago (July 12, 2011, 4:16 p.m.)
Deposited 1 year, 10 months ago (Oct. 10, 2023, 3:15 p.m.)
Indexed 3 months, 1 week ago (May 16, 2025, 9:34 p.m.)
Issued 14 years, 1 month ago (July 12, 2011)
Published 14 years, 1 month ago (July 12, 2011)
Published Online 14 years, 1 month ago (July 12, 2011)
Published Print 13 years, 11 months ago (Sept. 5, 2011)
Funders 0

None

@article{Seebeck_2011, title={From Activity Cliffs to Target‐Specific Scoring Models and Pharmacophore Hypotheses}, volume={6}, ISSN={1860-7187}, url={http://dx.doi.org/10.1002/cmdc.201100179}, DOI={10.1002/cmdc.201100179}, number={9}, journal={ChemMedChem}, publisher={Wiley}, author={Seebeck, Birte and Wagener, Markus and Rarey, Matthias}, year={2011}, month=jul, pages={1630–1639} }