Crossref journal-article
Wiley
Chemistry – A European Journal (311)
Abstract

AbstractThe electrolyte role in non‐aqueous lithium/air batteries is attracting a lot of attention in several research groups, because of its fundamental importance in producing the appropriate reversible electrochemical reduction. While recent published works identify the lithium superoxide as the main degrading agent for propylene carbonate (PC), there is no clear experimental evidence that the oxygen at the cathode interface layer does not reduce further to peroxide before reacting with PC. Here, we investigate the reactivity of lithium peroxide versus propylene carbonate and find that Li2O2 irreversibly decomposes the carbonate solvent, leading to alkyl carbonates. We also show that, compared with a single Li2O2 unit in PC, a crystalline surface of Li2O2 exhibits an enhanced reactivity. Our findings support the possibility that in lithium/air cells, oxygen may still be reduced to peroxide, with the formation of solid Li2O2, which degrades by decomposing PC.

Bibliography

Laino, T., & Curioni, A. (2012). A New Piece in the Puzzle of Lithium/Air Batteries: Computational Study on the Chemical Stability of Propylene Carbonate in the Presence of Lithium Peroxide. Chemistry – A European Journal, 18(12), 3510–3520. Portico.

Authors 2
  1. Teodoro Laino (first)
  2. Alessandro Curioni (additional)
References 93 Referenced 53
  1. 10.1016/j.jpowsour.2011.01.032
  2. 10.1016/j.jpowsour.2010.09.031
  3. 10.1021/jz1005384
  4. 10.1038/35104644
  5. 10.1038/451652a
  6. 10.1016/j.ssi.2008.01.095
  7. 10.1038/nmat1368
  8. 10.1149/1.1836378
  9. 10.1149/1.1498256
  10. 10.1149/1.1606454
  11. 10.1149/1.2131827
  12. 10.1021/ja056811q
  13. 10.1016/j.jpowsour.2005.03.082
  14. 10.1016/j.jpowsour.2009.06.109
  15. 10.1016/j.jpowsour.2010.12.092
  16. 10.1149/1.3256129
  17. 10.1002/ange.200705648
  18. 10.1002/anie.200705648
  19. 10.1246/cl.2011.668
  20. 10.1149/1.3305330
  21. 10.1016/j.jpowsour.2009.08.088
  22. 10.1016/j.jpowsour.2011.02.060
  23. 10.5796/electrochemistry.78.403
  24. 10.1149/1.3005989
  25. 10.1149/1.2990717
  26. 10.1039/b920012f
  27. 10.1016/j.jpowsour.2010.11.021
  28. 10.1149/1.3531981
  29. 10.1021/ja2021747
  30. 10.1149/1.3269928
  31. 10.1149/1.3555071
  32. 10.1021/jp908090s
  33. 10.1016/j.jpowsour.2008.07.080
  34. 10.1149/1.3271103
  35. 10.1016/j.jpowsour.2008.08.009
  36. 10.1149/1.3125285
  37. 10.1021/jp102019y
  38. 10.1021/jz200352v
  39. 10.1002/anie.201102357
  40. 10.1149/1.2838193
  41. 10.1021/cm970075a
  42. T. Laino Understanding the solvation of lithium oxide lithium peroxide and lithium superoxide in aprotic solvents by means of ab‐initio dynamics molecular Energy Storage Beyond Lithium Ion:Computational Perspectives Argonne National Laboratory 2010.
  43. S. Freunberger Z. Peng L. Hardwick Y. Chen F. Barde P. Bruce Understanding the chemical reactions in the Lithium‐Oxygen battery.218th Electrochemical Society Meeting Las Vegas NV 2010. (10.1149/MA2010-02/6/340)
  44. G. Girishkumar B. McCloskey Investigating the electrochemistry of Li‐O2battery using DEMS and techniques. surface characterizationEnergy Storage Beyond Lithium Ion: Materials Perspectives Oak Ridge National Laboratory 2010.
  45. S. Freunberger L. Hardwick Z. Peng V. Giordani Y. Chen P. Maire P. Novak J. Tarascon P. Bruce Fundamental Mechanism of the Lithium‐Air Battery The 15th International Meeting on Lithium Batteries Montreal Canada 2010. (10.1149/MA2010-03/1/830)
  46. F. Mizuno Fundamental Study on Rechargeable Reaction of Lithium‐Oxygen Battery Energy Storage Beyond Lithium Ion: Materials Perspectives Oak Ridge National Laboratory 2010.
  47. 10.1016/j.jpowsour.2011.06.099
  48. 10.1021/jz1016526
  49. 10.1021/ja1036572
  50. 10.1021/ja00497a026
  51. 10.1111/j.1751-1097.1978.tb07005.x
  52. 10.1021/ar00072a005
  53. 10.1016/0022-0728(91)85370-5
  54. 10.1016/0013-4686(66)80043-9
  55. 10.1016/0013-4686(82)85071-8
  56. {'key': 'e_1_2_6_55_2', 'first-page': '1', 'volume-title': 'Investigations of oxygen reduction reactions in non‐aqueous electrolyte', 'author': 'Ó’Laoire C.', 'year': '2010'} / Investigations of oxygen reduction reactions in non‐aqueous electrolyte by Ó’Laoire C. (2010)
  57. 10.1021/ja00905a001
  58. 10.1021/ja00364a005
  59. The donor number of a Lewis basis molecule is defined as the negative enthalpy value (in kcal mol−1 e) for the 1:1 adduct formation between the molecule of interest and the standard Lewis acid SbCl5(antimony pentachloride) in dilute solution in the noncoordinating solvent 1 2‐dichloroethane with a zero DN.
  60. 10.1016/S0010-8545(00)82045-7
  61. 10.1007/BF00913599
  62. 10.1007/BF00648901
  63. The donor number has been computed at the B3LYP level employing a DZVP basis set within a PCM formalism to mimic the effect of dichloromethane as a solvent. All calculations have been performed with G98 and are counterpoise corrected (BSSE‐free). As validation we have computed the DN value for PC equal to 13.6 in good agreement with the experimental one of 15.1.61.
  64. CPMD Consortium:http://www.cpmd.org(last accessed: February 2012).
  65. CP2 K Developers.http://www.cp2k.org(last accessed: February 2012).
  66. 10.1002/jcc.20035
  67. 10.1080/00268979600100761
  68. 10.1007/s00894-007-0233-4
  69. 10.1103/PhysRevLett.77.3865
  70. 10.1103/PhysRevLett.78.1396
  71. 10.1002/jcc.20495
  72. 10.1103/PhysRevB.54.1703
  73. 10.1063/1.2770708
  74. 10.1073/pnas.202427399
  75. 10.1016/j.parco.2004.12.004
  76. 10.1016/S0167-8191(00)00014-4
  77. 10.1002/cphc.200400063
  78. 10.1063/1.1329672
  79. 10.1063/1.1323224
  80. 10.1063/1.478522
  81. 10.1021/jp072597b
  82. 10.1021/jp000142f
  83. 10.1209/epl/i2001-00249-7
  84. 10.1103/PhysRevLett.84.5536
  85. 10.1021/ma9705681
  86. 10.1021/jp2003529
  87. 10.1149/1.2059336
  88. 10.1149/1.2050056
  89. 10.1149/1.1456533
  90. 10.1149/1.1622406
  91. 10.1063/1.3298994
  92. 10.1063/1.2409292
  93. V. Weber T. Laino A. Curioni to be published. With the present setup we achieved an elapsed time of 275 seconds per SCF cycle.More information on the performance and scaling of the new hybrid code is available at the URL:http://cpmd.org/the‐code/performance‐andscale‐out(last accessed: February 2012).
Dates
Type When
Created 13 years, 6 months ago (Feb. 22, 2012, 2:14 a.m.)
Deposited 1 year, 10 months ago (Oct. 16, 2023, 7:50 a.m.)
Indexed 1 month, 1 week ago (July 20, 2025, 6:45 p.m.)
Issued 13 years, 6 months ago (Feb. 22, 2012)
Published 13 years, 6 months ago (Feb. 22, 2012)
Published Online 13 years, 6 months ago (Feb. 22, 2012)
Published Print 13 years, 5 months ago (March 19, 2012)
Funders 0

None

@article{Laino_2012, title={A New Piece in the Puzzle of Lithium/Air Batteries: Computational Study on the Chemical Stability of Propylene Carbonate in the Presence of Lithium Peroxide}, volume={18}, ISSN={1521-3765}, url={http://dx.doi.org/10.1002/chem.201103057}, DOI={10.1002/chem.201103057}, number={12}, journal={Chemistry – A European Journal}, publisher={Wiley}, author={Laino, Teodoro and Curioni, Alessandro}, year={2012}, month=feb, pages={3510–3520} }