Crossref journal-article
Wiley
Chemistry – A European Journal (311)
Abstract

AbstractWe describe the preparation of a helicate containing four closely spaced, linearly arrayed copper(I) ions. This product may be prepared either directly by mixing copper(I) with a set of precursor amine and aldehyde subcomponents, or indirectly through the dimerization of a dicopper(I) helicate upon addition of 1,2‐phenylenediamine. A notable feature of this helicate is that its length is not limited by the lengths of its precursor subcomponents: each of the two ligands wrapped around the four copper(I) centers contains one diamine, two dialdehyde, and two monoamine residues. This work thus paves the way for the preparation of longer oligo‐ and polymeric structures. DFT calculations and electrochemical measurements indicate a high degree of electronic delocalization among the metal ions forming the cores of the structures described herein, which may therefore be described as “molecular wires”.

Bibliography

Schultz, D., Biaso, F., Shahi, A. R. M., Geoffroy, M., Rissanen, K., Gagliardi, L., Cramer, C. J., & Nitschke, J. R. (2008). Helicate Extension as a Route to Molecular Wires. Chemistry – A European Journal, 14(24), 7180–7185. Portico.

Authors 8
  1. David Schultz (first)
  2. Frédéric Biaso (additional)
  3. Abdul Rehaman Moughal Shahi (additional)
  4. Michel Geoffroy (additional)
  5. Kari Rissanen (additional)
  6. Laura Gagliardi (additional)
  7. Christopher J. Cramer (additional)
  8. Jonathan R. Nitschke (additional)
References 89 Referenced 34
  1. 10.1002/1521-3757(20021202)114:23<4633::AID-ANGE4633>3.0.CO;2-B
  2. 10.1002/1521-3773(20021202)41:23<4453::AID-ANIE4453>3.0.CO;2-1
  3. 10.1002/ange.19690810103
  4. 10.1002/anie.196900351
  5. 10.1038/35046000
  6. 10.1002/(SICI)1521-3757(19990517)111:10<1440::AID-ANGE1440>3.0.CO;2-H
  7. 10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6
  8. 10.1038/23912
  9. 10.1021/ar0000612
  10. 10.1126/science.1120986
  11. 10.1002/smll.200600645
  12. 10.1039/cs9952400121
  13. 10.1002/ange.19971090111
  14. 10.1002/anie.199700561
  15. 10.1016/S0010-8545(02)00121-2
  16. 10.1021/ic034071l
  17. 10.1021/ar068185n
  18. 10.1126/science.171.3968.241
  19. 10.1021/ja00386a030
  20. 10.1073/pnas.84.9.2565
  21. 10.1002/tcr.20097
  22. 10.1021/cr0103672
  23. 10.1021/ja00025a050
  24. 10.1021/ic061504m
  25. 10.1002/ange.19971092235
  26. 10.1002/anie.199725091
  27. 10.1021/ja046001z
  28. 10.1039/dt9850001771
  29. 10.1002/1521-3757(20000602)112:11<2044::AID-ANGE2044>3.0.CO;2-C
  30. 10.1002/1521-3773(20000602)39:11<1968::AID-ANIE1968>3.0.CO;2-2
  31. 10.1002/1521-3757(20010417)113:8<1586::AID-ANGE1586>3.0.CO;2-3
  32. 10.1002/1521-3773(20010417)40:8<1538::AID-ANIE1538>3.0.CO;2-F
  33. 10.1002/ange.200603521
  34. 10.1002/anie.200603521
  35. 10.1126/science.1096914
  36. 10.1021/ja00008a046
  37. 10.1002/chem.200700020
  38. 10.1021/ar9702684
  39. 10.1002/ange.200603180
  40. 10.1002/anie.200603180
  41. 10.1126/science.1094791
  42. 10.1021/ja971204r
  43. 10.1021/ja056993o
  44. 10.1021/ja055013x
  45. 10.1021/ar040152p
  46. 10.1126/science.1124985
  47. {'key': 'e_1_2_5_45_2', 'first-page': '41', 'author': 'Hof F.', 'year': '2002', 'journal-title': 'Angew. Chem.'} / Angew. Chem. by Hof F. (2002)
  48. 10.1002/1521-3773(20020503)41:9<1488::AID-ANIE1488>3.0.CO;2-G
  49. 10.1038/nature05452
  50. 10.1002/adma.200502394
  51. 10.1021/ol070371l
  52. 10.1021/ar980101q
  53. 10.1016/j.ccr.2004.08.023
  54. 10.1021/ja052326j
  55. 10.1002/chem.200601865
  56. 10.1098/rsta.2007.2024
  57. 10.1073/pnas.072065599
  58. 10.1073/pnas.0607786103
  59. {'key': 'e_1_2_5_56_2', 'volume-title': 'Principles of Polymerization', 'author': 'Odian G.', 'year': '1991'} / Principles of Polymerization by Odian G. (1991)
  60. 10.1103/PhysRevLett.91.146401
  61. 10.1007/BF01127507
  62. 10.1063/1.452288
  63. 10.1007/s00775-007-0290-2
  64. 10.1002/jcc.10189
  65. M. N. Burnett C. K. Johnson ORTEP III Report ORNL‐6895 Oak Ridge National Laboratory Oak Ridge (Tennessee USA) 1996.
  66. 10.1007/s00214-004-0577-0
  67. Gaussian 03 Revision B.05 M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman J. A. Montgomery  Jr. T. Vreven K. N. Kudin J. C. Burant J. M. Millam S. S. Iyengar J. Tomasi V. Barone B. Mennucci M. Cossi G. Scalmani N. Rega G. A. Petersson H. Nakatsuji M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai M. Klene X. Li J. E. Knox H. P. Hratchian J. B. Cross V. Bakken C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski P. Y. Ayala K. Morokuma G. A. Voth P. Salvador J. J. Dannenberg V. G. Zakrzewski S. Dapprich A. D. Daniels M. C. Strain O. Farkas D. K. Malick A. D. Rabuck K. Raghavachari J. B. Foresman J. V. Ortiz Q. Cui A. G. Baboul S. Clifford J. Cioslowski B. B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. L. Martin D. J. Fox T. Keith M. A. Al‐Laham C. Y. Peng A. Nanayakkara M. Challacombe P. M. W. Gill B. Johnson W. Chen M. W. Wong C. Gonzalez J. A. Pople Gaussian Inc. Wallingford CT 2004.
  68. 10.1021/jp063552y
  69. We expect the error to be largest for31 a4+because this molecule has the largest charge to size ratio and thus the greatest uncertainty in predicted solvation‐free energy. The predicted values for2 aare likely to be more quantitatively accurate than those for1 abecause2 ais larger by about a factor of two but oxidation increases its total molecular charge by only 50 rather than 100 %.
  70. 10.1021/ja070320j
  71. 10.1021/j100096a001
  72. 10.1063/1.463096
  73. 10.1016/0009-2614(89)85118-8
  74. 10.1039/b504634c
  75. 10.1002/ange.200700727
  76. 10.1002/anie.200700727
  77. COLLECT Bruker AXS Madison (Wisconsin USA) 2004.
  78. {'key': 'e_1_2_5_75_2', 'volume-title': 'Methods in Enzymology, Vol.\u2005276', 'author': 'Otwinowski Z.', 'year': '1997'} / Methods in Enzymology, Vol. 276 by Otwinowski Z. (1997)
  79. 10.1107/S0021889899006020
  80. 10.1107/S0021889898007717
  81. G. M. Sheldrick Programs for Crystal Structure Analysis (Release 97–2) University of Göttingen Göttingen (Germany) 1998.
Dates
Type When
Created 17 years, 1 month ago (July 9, 2008, 3:24 a.m.)
Deposited 1 year, 10 months ago (Oct. 16, 2023, 10:26 a.m.)
Indexed 1 year, 2 months ago (June 12, 2024, 3:54 a.m.)
Issued 17 years ago (Aug. 6, 2008)
Published 17 years ago (Aug. 6, 2008)
Published Online 17 years ago (Aug. 6, 2008)
Published Print 17 years ago (Aug. 18, 2008)
Funders 0

None

@article{Schultz_2008, title={Helicate Extension as a Route to Molecular Wires}, volume={14}, ISSN={1521-3765}, url={http://dx.doi.org/10.1002/chem.200800503}, DOI={10.1002/chem.200800503}, number={24}, journal={Chemistry – A European Journal}, publisher={Wiley}, author={Schultz, David and Biaso, Frédéric and Shahi, Abdul Rehaman Moughal and Geoffroy, Michel and Rissanen, Kari and Gagliardi, Laura and Cramer, Christopher J. and Nitschke, Jonathan R.}, year={2008}, month=aug, pages={7180–7185} }