Crossref journal-article
Wiley
Chemistry – A European Journal (311)
Abstract

AbstractPorous metal–organic framework compounds with coordinatively unsaturated metal sites on the inner surface of the pores promise to be valuable adsorbents and catalyst systems, either in industrial applications or as model systems to study interactions with guest molecules. The dehydration process of two isostructural microporous coordination polymers, [M2(dhtp)(H2O)2]⋅8 H2O, termed CPO‐27‐M (M=Co, Zn; H4dhtp=2,5‐dihydroxyterephthalic acid) was investigated by in situ variable temperature X‐ray diffraction. Both compounds contain accessible coordination sites at the metal after complete removal of the solvent. However, despite the analogy of their crystal structures, they behave differently during dehydration. For CPO‐27‐Co, water desorption is a smooth topotactic process of second order with no concomitant space group change and no increase in microstrain, which is beneficial for the applicability of the material. Removal of the water propagates from the center of the channels outwards. The coordinating water molecule at the metal desorbs only when almost all the bulk water in the pores has disappeared. In contrast, discontinuities in the powder pattern of CPO‐27‐Zn indicate the occurrence of first‐order transitions. The crystal structures of four of the five individual phases could be determined. The structure of the intermediate phase occurring just before the framework is completely evacuated was elusive in respect to full structure solution and refinement, but it is most probably related to the removal of the axis of threefold symmetry. The zinc‐based material experiences a significant amount of strain.

Bibliography

Dietzel, P. D. C., Johnsen, R. E., Blom, R., & Fjellvåg, H. (2008). Structural Changes and Coordinatively Unsaturated Metal Atoms on Dehydration of Honeycomb Analogous Microporous Metal–Organic Frameworks. Chemistry – A European Journal, 14(8), 2389–2397. Portico.

Authors 4
  1. Pascal D. C. Dietzel (first)
  2. Rune E. Johnsen (additional)
  3. Richard Blom (additional)
  4. Helmer Fjellvåg (additional)
References 79 Referenced 265
  1. 10.1039/b200393g
  2. 10.1039/b305705b
  3. 10.1002/ange.200300610
  4. 10.1002/anie.200300610
  5. 10.1016/j.jssc.2005.06.013
  6. 10.1039/b515713g
  7. 10.1039/B610264F
  8. 10.1039/B511728C
  9. 10.1002/ange.200462786
  10. 10.1002/anie.200462786
  11. 10.1039/b515434k
  12. 10.1021/ja056639q
  13. 10.1021/ja058213h
  14. 10.1021/ja0656853
  15. 10.1021/ic0611948
  16. 10.1021/jp055908w
  17. 10.1002/ange.200601991
  18. 10.1002/anie.200601991
  19. 10.1002/ange.200604362
  20. 10.1002/anie.200604362
  21. 10.1016/j.jssc.2005.05.036
  22. 10.1039/b313997m
  23. 10.1021/ja0276974
  24. 10.1126/science.1137975
  25. 10.1002/1521-3757(20020916)114:18<3542::AID-ANGE3542>3.0.CO;2-P
  26. 10.1002/1521-3773(20020916)41:18<3392::AID-ANIE3392>3.0.CO;2-V
  27. 10.1002/1521-3757(20020916)114:18<3545::AID-ANGE3545>3.0.CO;2-7
  28. 10.1002/1521-3773(20020916)41:18<3395::AID-ANIE3395>3.0.CO;2-D
  29. 10.1021/ja0474190
  30. 10.1021/ja0561439
  31. 10.1002/ange.200462711
  32. 10.1002/anie.200462711
  33. 10.1021/ja054913a
  34. 10.1038/46248
  35. 10.1039/a809746a
  36. 10.1002/1521-3757(20001103)112:21<4001::AID-ANGE4001>3.0.CO;2-5
  37. 10.1002/1521-3773(20001103)39:21<3843::AID-ANIE3843>3.0.CO;2-#
  38. 10.1021/ic010528k
  39. 10.1039/b200213b
  40. 10.1021/ja0262737
  41. 10.1021/ja017560y
  42. 10.1039/b301219k
  43. 10.1039/B404483P
  44. 10.1039/B404485A
  45. 10.1021/ja054119p
  46. 10.1021/ja043756x
  47. 10.1021/ja0466715
  48. 10.1002/ange.200353494
  49. 10.1002/anie.200353494
  50. 10.1021/ja039022m
  51. 10.1002/ange.200453923
  52. 10.1002/anie.200453923
  53. 10.1021/ja042420k
  54. 10.1002/ange.200502309
  55. 10.1002/anie.200502309
  56. 10.1002/chem.200601534
  57. 10.1021/ic061095u
  58. 10.1126/science.1135445
  59. 10.1021/ja003159k
  60. 10.1002/ange.200501508
  61. 10.1002/anie.200501508
  62. 10.1021/ja045123o
  63. 10.1107/S002188989301235X
  64. 10.4028/www.scientific.net/MSF.228-231.369
  65. 10.1007/BF00199498
  66. 10.1021/jp9730398
  67. 10.1016/S1387-1811(99)00100-6
  68. 10.1007/s00269-002-0247-5
  69. 10.1127/0935-1221/2003/0015-0257
  70. 10.2138/am-2004-0112
  71. SAINT: Area‐Detector Integration Software. Bruker AXS: Madison WI 2004.
  72. SADABS: Area‐Detector Absorption Correction Bruker AXS: Madison WI 2004.
  73. G. M. Sheldrick SHELXTL Program suite for the solution and refinement of crystal structures Bruker AXS: Madison WI 2004.
  74. 10.1107/S0021889802022112
  75. 10.1021/ja964245g
  76. 10.1080/08957959608201408
  77. K. Ståhl WINPOW Version 13‐OCT‐2006 2006.
  78. TOPAS: General profile and structure analysis software for powder diffraction data Bruker AXS Karlsruhe (Germany) 2003.
  79. 10.1524/zksu.2006.suppl_23.231
Dates
Type When
Created 17 years, 7 months ago (Jan. 18, 2008, 5:53 a.m.)
Deposited 1 year, 10 months ago (Oct. 16, 2023, 12:22 p.m.)
Indexed 13 hours, 56 minutes ago (Aug. 21, 2025, 12:54 p.m.)
Issued 17 years, 5 months ago (Feb. 28, 2008)
Published 17 years, 5 months ago (Feb. 28, 2008)
Published Online 17 years, 5 months ago (Feb. 28, 2008)
Published Print 17 years, 5 months ago (March 7, 2008)
Funders 0

None

@article{Dietzel_2008, title={Structural Changes and Coordinatively Unsaturated Metal Atoms on Dehydration of Honeycomb Analogous Microporous Metal–Organic Frameworks}, volume={14}, ISSN={1521-3765}, url={http://dx.doi.org/10.1002/chem.200701370}, DOI={10.1002/chem.200701370}, number={8}, journal={Chemistry – A European Journal}, publisher={Wiley}, author={Dietzel, Pascal D. C. and Johnsen, Rune E. and Blom, Richard and Fjellvåg, Helmer}, year={2008}, month=feb, pages={2389–2397} }