Crossref journal-article
Wiley
Journal of Chemometrics (311)
Abstract

AbstractThe accuracy of in silico models can be inhomogeneous: models can show excellent performance on some chemical subspaces but have low accuracy on others. We show that applicability domain (AD) approaches can differentiate reliable and non‐reliable predictions and identify those with experimental accuracy for both regression and classification models. For reliably predicted molecules, the predicted values can be used instead of experimental measurements. This can halve time and costs of experimental measurements. The developed classification models for AMES mutagenicity test and CYP450 inhibition, which are important drug discovery properties, are publicly available at the online chemical database and modeling environment (OCHEM) site http://qspr.eu Copyright © 2010 John Wiley & Sons, Ltd.

Bibliography

Sushko, I., Novotarskyi, S., Körner, R., Pandey, A. K., Kovalishyn, V. V., Prokopenko, V. V., & Tetko, I. V. (2010). Applicability domain for in silico models to achieve accuracy of experimental measurements. Journal of Chemometrics, 24(3–4), 202–208. Portico.

Authors 7
  1. Iurii Sushko (first)
  2. Sergii Novotarskyi (additional)
  3. Robert Körner (additional)
  4. Anil Kumar Pandey (additional)
  5. Vasily V. Kovalishyn (additional)
  6. Volodymyr V. Prokopenko (additional)
  7. Igor V. Tetko (additional)
References 28 Referenced 89
  1. 10.1016/j.patrec.2005.10.010
  2. BiJK BenettK.Regression Error Characteristic Curves.
  3. 10.1016/j.drudis.2006.06.013
  4. 10.1002/jps.21494
  5. 10.1002/(SICI)1099-128X(199609)10:5/6<687::AID-CEM469>3.0.CO;2-O
  6. 10.1002/(SICI)1099-128X(199701)11:1<39::AID-CEM433>3.0.CO;2-S
  7. 10.1002/(SICI)1099-128X(199705)11:3<181::AID-CEM459>3.0.CO;2-7
  8. 10.1002/(SICI)1099-128X(199807/08)12:4<295::AID-CEM510>3.0.CO;2-T
  9. 10.1016/S0166-445X(00)00158-2
  10. 10.1021/ci800151m
  11. 10.1177/026119290503300209
  12. {'key': 'e_1_2_1_13_2', 'first-page': '185', 'article-title': 'Associative neural network', 'volume': '458', 'author': 'Tetko IV', 'year': '2008', 'journal-title': 'Methods Mol. Biol.'} / Methods Mol. Biol. / Associative neural network by Tetko IV (2008)
  13. 10.1021/ci010379o
  14. 10.1021/ci025515j
  15. 10.1021/ci00027a006
  16. 10.1021/ci700443v
  17. 10.1007/BF00058655
  18. 10.1021/ci0202741
  19. {'key': 'e_1_2_1_20_2', 'first-page': '80', 'volume-title': 'Applicability Domain for Classification problems', 'author': 'Sushko I', 'year': '2009'} / Applicability Domain for Classification problems by Sushko I (2009)
  20. 10.1021/tx049666n
  21. 10.1016/S0166-1280(02)00618-8
  22. 10.1080/10629360412331297344
  23. 10.1002/qsar.200960003
  24. 10.1002/cbdv.200900075
  25. 10.1016/S0027-5107(00)00064-6
  26. 10.1021/ci900161g
  27. 10.1007/978-3-642-48736-1_5
  28. 10.1080/15287398809531194
Dates
Type When
Created 15 years, 4 months ago (April 8, 2010, 3:38 a.m.)
Deposited 1 year, 11 months ago (Aug. 31, 2023, 12:52 a.m.)
Indexed 3 weeks ago (Aug. 2, 2025, 12:16 a.m.)
Issued 15 years, 5 months ago (March 1, 2010)
Published 15 years, 5 months ago (March 1, 2010)
Published Online 15 years, 4 months ago (April 8, 2010)
Published Print 15 years, 5 months ago (March 1, 2010)
Funders 0

None

@article{Sushko_2010, title={Applicability domain for in silico models to achieve accuracy of experimental measurements}, volume={24}, ISSN={1099-128X}, url={http://dx.doi.org/10.1002/cem.1296}, DOI={10.1002/cem.1296}, number={3–4}, journal={Journal of Chemometrics}, publisher={Wiley}, author={Sushko, Iurii and Novotarskyi, Sergii and Körner, Robert and Pandey, Anil Kumar and Kovalishyn, Vasily V. and Prokopenko, Volodymyr V. and Tetko, Igor V.}, year={2010}, month=mar, pages={202–208} }