Crossref journal-article
Wiley
ChemCatChem (311)
Abstract

AbstractBig data and artificial intelligence has revolutionized science in almost every field – from economics to physics. In the area of materials science and computational heterogeneous catalysis, this revolution has led to the development of scientific data repositories, as well as data mining and machine learning tools to investigate the vast materials space. The goal of using these tools is to establish a deeper understanding of the relations between materials properties and activity, selectivity and stability – the important figures of merit in catalysis. Based on these insights, catalyst design principles can be established, which hopefully lead us to discover highly efficient catalysts to solve pressing issues for a sustainable future and the synthesis of highly functional materials, chemicals and pharmaceuticals. The inherent complexity of catalytic reactions quests for machine learning methods to efficiently navigate through the high‐dimensional hyper‐surfaces in structure optimization problems to determine relevant chemical structures and transition states. In this review, we show how cutting edge data infrastructures and machine learning methods are being used to address problems in computational heterogeneous catalysis.

Bibliography

Schlexer Lamoureux, P., Winther, K. T., Garrido Torres, J. A., Streibel, V., Zhao, M., Bajdich, M., Abild‐Pedersen, F., & Bligaard, T. (2019). Machine Learning for Computational Heterogeneous Catalysis. ChemCatChem, 11(16), 3581–3601. Portico.

Authors 8
  1. Philomena Schlexer Lamoureux (first)
  2. Kirsten T. Winther (additional)
  3. Jose Antonio Garrido Torres (additional)
  4. Verena Streibel (additional)
  5. Meng Zhao (additional)
  6. Michal Bajdich (additional)
  7. Frank Abild‐Pedersen (additional)
  8. Thomas Bligaard (additional)
References 180 Referenced 283
  1. 10.1126/science.aad4998
  2. 10.1021/acscatal.8b01708
  3. 10.1021/ci60004a002
  4. 10.1038/s41586-018-0337-2
  5. 10.1016/S1369-7021(05)71123-8
  6. 10.1146/annurev-matsci-070214-020844
  7. 10.1557/jmr.2016.80
  8. 10.1088/0957-0233/16/1/035
  9. 10.1186/s13065-015-0104-5
  10. 10.1039/c1cp21668f
  11. 10.1021/acs.jpcc.6b10908
  12. 10.1063/1.5020067
  13. 10.1016/0098-1354(95)00173-5
  14. 10.1016/0098-1354(95)00251-0
  15. {'key': 'e_1_2_8_15_1', 'first-page': '1', 'author': 'Reuter K.', 'year': '2018', 'journal-title': 'Handb. Mater. Model.'} / Handb. Mater. Model. by Reuter K. (2018)
  16. 10.1038/s41597-019-0081-y
  17. 10.1007/s11837-016-2036-5
  18. 10.1063/1.4944683
  19. 10.1038/sdata.2015.9
  20. 10.1038/sdata.2018.53
  21. 10.1520/MPC20150014 / Mater. Perform. Charact. by Lin L. (2015)
  22. 10.1063/1.4812323
  23. 10.1016/j.commatsci.2015.09.013
  24. 10.1557/mrs.2018.208
  25. 10.1007/s11837-013-0755-4
  26. 10.1016/j.commatsci.2012.02.002
  27. 10.1109/MCSE.2012.16
  28. A. Togo Phonon database at Kyoto university http://phonondb.mtl.kyoto-u.ac.jp.
  29. 10.1088/2053-1583/aacfc1
  30. 10.1107/S0108768102003890
  31. 10.1107/S0108768102006948
  32. 10.1093/nar/gkr900
  33. 10.7567/JJAP.50.09MA05
  34. 10.1002/anie.201107947
  35. 10.1002/ange.201107947
  36. 10.1038/sdata.2016.18
  37. 10.1002/cctc.201801956
  38. 10.1021/acs.jcim.8b00165
  39. 10.1186/s13321-018-0277-8
  40. 10.1088/1361-648X/aa680e
  41. 10.1016/j.jcat.2005.03.019
  42. 10.1002/ange.200460731
  43. 10.1002/anie.200460731
  44. J. K. Nørskov F. Studt F. Abild-Pedersen T. Bligaard Fundamental concepts in heterogeneous catalysis John Wiley & Sons 2014. (10.1002/9781118892114)
  45. 10.1002/aic.16198
  46. P. Sabatier La catalyse en chimie organique. Libr. Polytech. Paris Liege 1920.
  47. 10.1515/zpch-1924-10814 / Z. Phys. Chem. by Brönsted J. (1924)
  48. 10.1039/tf9363201333
  49. 10.1103/PhysRevLett.99.016105
  50. 10.1039/b800260f
  51. 10.1021/jp808945y
  52. 10.1016/j.jcat.2014.12.033
  53. 10.1039/tf9585401053
  54. 10.1126/science.279.5358.1913
  55. 10.1016/0039-6028(96)80007-0
  56. I. Takigawa K. ichi Shimizu K. Tsuda S. Takakusagi inNanoinformatics Springer Singapore 2018 pp. 45—64. (10.1007/978-981-10-7617-6_3)
  57. 10.1016/j.susc.2018.11.019
  58. C. Dickens A. Latimer CS229 Final Report: Learning Chemistry from Moment to Moment 2018.
  59. 10.1039/C7SC03422A
  60. 10.1039/C6RA04345C
  61. 10.1021/acscatal.7b01648
  62. {'key': 'e_1_2_8_60_1', 'volume': '120', 'author': 'Xie T.', 'year': '2018', 'journal-title': 'Phys. Rev. Lett.'} / Phys. Rev. Lett. by Xie T. (2018)
  63. 10.1126/science.aab3501
  64. {'key': 'e_1_2_8_62_1', 'volume': '118', 'author': 'Ma X.', 'year': '2017', 'journal-title': 'Phys. Rev. Lett.'} / Phys. Rev. Lett. by Ma X. (2017)
  65. 10.1103/PhysRevB.98.214112
  66. 10.1103/PhysRevB.96.024104
  67. 10.1080/14686996.2018.1439253
  68. 10.1016/j.apcatb.2008.10.012
  69. 10.1002/anie.201402958
  70. 10.1002/ange.201402958
  71. 10.1103/PhysRevLett.118.036101
  72. 10.1016/j.cattod.2016.04.013
  73. 10.1021/acs.jpcc.7b08438
  74. 10.1002/cctc.201701841
  75. 10.1039/C9NR00959K
  76. T. S. Choksi L. T. Roling V. Streibel F. Abild-Pedersen J. Phys. Chem. Lett. 2019 10 1852-18592019. (10.1021/acs.jpclett.9b00475)
  77. 10.1103/PhysRevB.87.184115
  78. 10.1007/BF01908075
  79. {'key': 'e_1_2_8_76_1', 'first-page': '583', 'volume': '3', 'author': 'Strehl A.', 'year': '2003', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Strehl A. (2003)
  80. J. B. Hirschberg A. Rosenberg2007.
  81. {'key': 'e_1_2_8_78_1', 'first-page': '231', 'volume': '1', 'author': 'Kriegel H.-P.', 'year': '2011', 'journal-title': 'Interdiscip. Sci. Rev.'} / Interdiscip. Sci. Rev. by Kriegel H.-P. (2011)
  82. M. K. Pakhira 2014 International Conference on Computational Intelligence and Communication Networks 2014 pp. 1047–1051.
  83. 10.1093/comjnl/41.8.578
  84. 10.1021/acs.jpcc.7b02424
  85. 10.1007/BF00337288
  86. 10.1214/aoms/1177699147
  87. 10.1016/j.patcog.2012.06.010
  88. {'key': 'e_1_2_8_85_1', 'first-page': '195', 'author': 'Tikhonov A. N.', 'year': '1943', 'journal-title': 'Dokl. Akad. Nauk SSSR'} / Dokl. Akad. Nauk SSSR by Tikhonov A. N. (1943)
  89. 10.1137/0907087
  90. 10.1111/j.1467-9868.2005.00503.x
  91. 10.1021/acs.jpcc.5b02055
  92. 10.1021/acscatal.6b03403
  93. 10.1146/annurev-chembioeng-080615-034413
  94. 10.1002/anie.201402958
  95. 10.1002/ange.201402958
  96. 10.1021/acs.jpcc.5b10071
  97. K. P. Murphy Machine learning: a probabilistic perspective MIT press 2012.
  98. C. M. Bishop Pattern recognition and machine learning Springer 2006.
  99. 10.1038/s41524-018-0096-5
  100. 10.1038/nmat1752
  101. 10.1021/jp1048887
  102. O. Roy M. Vetterli 2007 15th European Signal Processing Conference 2007 pp. 606–610.
  103. 10.1103/PhysRevLett.104.136403
  104. 10.1038/ncomms14621
  105. 10.1021/acs.jpclett.6b01254
  106. 10.1023/A:1010933404324
  107. 10.1103/PhysRevB.89.094104
  108. 10.1016/j.ijhydene.2014.01.160
  109. 10.1021/acs.jpca.7b08750
  110. 10.1039/C7RA06622H
  111. 10.1038/ncomms13890
  112. 10.1063/1.5019779
  113. 10.1016/0920-5861(94)00148-U
  114. H. Lukas S. G. Fries B. Sundman Computational Thermodynamics – The Calphad Method Cambridge 2007. (10.1017/CBO9780511804137)
  115. 10.1016/S0079-6425(03)00025-2
  116. 10.1016/S0364-5916(02)00037-8
  117. 10.1016/j.calphad.2008.08.004
  118. 10.1016/S0364-5916(02)00036-6
  119. 10.1016/j.calphad.2016.05.002
  120. 10.1103/PhysRevB.85.235438
  121. 10.1038/s41467-018-06682-4
  122. 10.1021/acs.jpclett.8b03527
  123. 10.1103/PhysRevB.95.144110
  124. 10.1021/acs.chemmater.7b00156
  125. 10.1103/PhysRevLett.120.145301
  126. 10.1016/j.commatsci.2018.03.075
  127. 10.1016/j.commatsci.2018.05.018
  128. 10.1016/j.commatsci.2019.03.005
  129. 10.1038/s41524-017-0017-z
  130. 10.1021/acs.jpca.9b00311
  131. 10.1016/j.coche.2013.04.006
  132. 10.1021/cs200462f
  133. 10.1021/acs.jpclett.7b01974
  134. 10.1021/acs.jpclett.5b01660
  135. 10.1039/C7TA01812F
  136. 10.1039/C8CP00102B
  137. 10.1038/s41929-018-0142-1
  138. 10.1021/acs.jpclett.7b02010
  139. 10.1021/acs.jpcc.7b08686
  140. 10.1021/acs.jpcc.7b12670
  141. 10.1021/acs.jpcc.8b09284
  142. 10.1021/acscatal.8b04478
  143. 10.1016/0167-5729(86)90003-8
  144. 10.1002/anie.201808246
  145. 10.1103/PhysRevB.87.184115
  146. B. Settles Synthesis Lectures on Artificial Intelligence and Machine Learning2012 6 1–114. (10.2200/S00429ED1V01Y201207AIM018)
  147. Z.-H. Han K.-S. Zhang inReal-World Applications of Genetic Algorithms(Ed.: O. Roeva) IntechOpen Rijeka 2012 Chapter 17.
  148. 10.1021/jacs.8b00947
  149. 10.1103/PhysRevLett.75.288
  150. 10.1016/0009-2614(96)00406-X
  151. 10.1021/jp970984n
  152. 10.1103/PhysRevLett.97.170201
  153. 10.1002/qua.24836
  154. 10.1021/acs.jpca.8b00160
  155. 10.1103/PhysRevLett.120.026102
  156. E. G. del Río J. J. Mortensen K. W. Jacobsen arXiv preprint arXiv:1808.085882018.
  157. 10.1063/1.5054968
  158. 10.1093/imamat/6.1.76
  159. 10.1093/comjnl/13.3.317
  160. 10.1090/S0025-5718-1970-0258249-6
  161. 10.1090/S0025-5718-1970-0274029-X
  162. H. Jónsson G. Mills K. W. Jacobsen1998.
  163. 10.1063/1.1329672
  164. 10.1063/1.4960708
  165. 10.1063/1.4986787
  166. 10.1103/PhysRevLett.122.156001
  167. 10.1002/jcc.23833
  168. {'key': 'e_1_2_8_164_1', 'first-page': '5166', 'volume': '8', 'author': 'Sharada S. M.', 'year': '2012', 'journal-title': 'J. Comput. Chem.'} / J. Comput. Chem. by Sharada S. M. (2012)
  169. 10.1021/acs.jctc.5b00407
  170. J. Zador H. N. Najm KinBot 1.0: a code for automatic PES exploration Sandia National Laboratories Technical Report No. SAND2012-8095 2013.
  171. 10.1021/acs.jctc.8b01182
  172. 10.1021/acscentsci.7b00064
  173. CatLearn Code arXiv:1904.00904 Accessed: 2019–04-01.
  174. 10.1038/srep19375
  175. 10.1126/science.1212858
  176. 10.1126/science.1215081
  177. 10.1021/cs5016657
  178. 10.1093/nsr/nwv023
  179. 10.1038/s41929-018-0162-x
  180. 10.1021/acscatal.8b03327
Dates
Type When
Created 6 years, 3 months ago (May 15, 2019, 1:20 p.m.)
Deposited 1 year, 1 month ago (July 17, 2024, 10:25 p.m.)
Indexed 2 weeks, 5 days ago (Aug. 2, 2025, 1:16 a.m.)
Issued 6 years, 2 months ago (June 18, 2019)
Published 6 years, 2 months ago (June 18, 2019)
Published Online 6 years, 2 months ago (June 18, 2019)
Published Print 6 years ago (Aug. 21, 2019)
Funders 1
  1. Basic Energy Sciences 10.13039/100006151

    Region: Americas

    gov (National government)

    Labels6
    1. Office of Basic Energy Sciences
    2. DOE Office of Basic Energy Sciences
    3. US Department of Energy's Basic Energy Sciences
    4. DOE Basic Energy Sciences
    5. Department of Energy Basic Energy Sciences Program
    6. BES
    Awards1
    1. DE-AC02-76SF00515

@article{Schlexer_Lamoureux_2019, title={Machine Learning for Computational Heterogeneous Catalysis}, volume={11}, ISSN={1867-3899}, url={http://dx.doi.org/10.1002/cctc.201900595}, DOI={10.1002/cctc.201900595}, number={16}, journal={ChemCatChem}, publisher={Wiley}, author={Schlexer Lamoureux, Philomena and Winther, Kirsten T. and Garrido Torres, Jose Antonio and Streibel, Verena and Zhao, Meng and Bajdich, Michal and Abild‐Pedersen, Frank and Bligaard, Thomas}, year={2019}, month=jun, pages={3581–3601} }