Abstract
AbstractBig data and artificial intelligence has revolutionized science in almost every field – from economics to physics. In the area of materials science and computational heterogeneous catalysis, this revolution has led to the development of scientific data repositories, as well as data mining and machine learning tools to investigate the vast materials space. The goal of using these tools is to establish a deeper understanding of the relations between materials properties and activity, selectivity and stability – the important figures of merit in catalysis. Based on these insights, catalyst design principles can be established, which hopefully lead us to discover highly efficient catalysts to solve pressing issues for a sustainable future and the synthesis of highly functional materials, chemicals and pharmaceuticals. The inherent complexity of catalytic reactions quests for machine learning methods to efficiently navigate through the high‐dimensional hyper‐surfaces in structure optimization problems to determine relevant chemical structures and transition states. In this review, we show how cutting edge data infrastructures and machine learning methods are being used to address problems in computational heterogeneous catalysis.
References
180
Referenced
283
10.1126/science.aad4998
10.1021/acscatal.8b01708
10.1021/ci60004a002
10.1038/s41586-018-0337-2
10.1016/S1369-7021(05)71123-8
10.1146/annurev-matsci-070214-020844
10.1557/jmr.2016.80
10.1088/0957-0233/16/1/035
10.1186/s13065-015-0104-5
10.1039/c1cp21668f
10.1021/acs.jpcc.6b10908
10.1063/1.5020067
10.1016/0098-1354(95)00173-5
10.1016/0098-1354(95)00251-0
{'key': 'e_1_2_8_15_1', 'first-page': '1', 'author': 'Reuter K.', 'year': '2018', 'journal-title': 'Handb. Mater. Model.'}
/ Handb. Mater. Model. by Reuter K. (2018)10.1038/s41597-019-0081-y
10.1007/s11837-016-2036-5
10.1063/1.4944683
10.1038/sdata.2015.9
10.1038/sdata.2018.53
10.1520/MPC20150014
/ Mater. Perform. Charact. by Lin L. (2015)10.1063/1.4812323
10.1016/j.commatsci.2015.09.013
10.1557/mrs.2018.208
10.1007/s11837-013-0755-4
10.1016/j.commatsci.2012.02.002
10.1109/MCSE.2012.16
- A. Togo Phonon database at Kyoto university http://phonondb.mtl.kyoto-u.ac.jp.
10.1088/2053-1583/aacfc1
10.1107/S0108768102003890
10.1107/S0108768102006948
10.1093/nar/gkr900
10.7567/JJAP.50.09MA05
10.1002/anie.201107947
10.1002/ange.201107947
10.1038/sdata.2016.18
10.1002/cctc.201801956
10.1021/acs.jcim.8b00165
10.1186/s13321-018-0277-8
10.1088/1361-648X/aa680e
10.1016/j.jcat.2005.03.019
10.1002/ange.200460731
10.1002/anie.200460731
-
J. K. Nørskov F. Studt F. Abild-Pedersen T. Bligaard Fundamental concepts in heterogeneous catalysis John Wiley & Sons 2014.
(
10.1002/9781118892114
) 10.1002/aic.16198
- P. Sabatier La catalyse en chimie organique. Libr. Polytech. Paris Liege 1920.
10.1515/zpch-1924-10814
/ Z. Phys. Chem. by Brönsted J. (1924)10.1039/tf9363201333
10.1103/PhysRevLett.99.016105
10.1039/b800260f
10.1021/jp808945y
10.1016/j.jcat.2014.12.033
10.1039/tf9585401053
10.1126/science.279.5358.1913
10.1016/0039-6028(96)80007-0
-
I. Takigawa K. ichi Shimizu K. Tsuda S. Takakusagi inNanoinformatics Springer Singapore 2018 pp. 45—64.
(
10.1007/978-981-10-7617-6_3
) 10.1016/j.susc.2018.11.019
- C. Dickens A. Latimer CS229 Final Report: Learning Chemistry from Moment to Moment 2018.
10.1039/C7SC03422A
10.1039/C6RA04345C
10.1021/acscatal.7b01648
{'key': 'e_1_2_8_60_1', 'volume': '120', 'author': 'Xie T.', 'year': '2018', 'journal-title': 'Phys. Rev. Lett.'}
/ Phys. Rev. Lett. by Xie T. (2018)10.1126/science.aab3501
{'key': 'e_1_2_8_62_1', 'volume': '118', 'author': 'Ma X.', 'year': '2017', 'journal-title': 'Phys. Rev. Lett.'}
/ Phys. Rev. Lett. by Ma X. (2017)10.1103/PhysRevB.98.214112
10.1103/PhysRevB.96.024104
10.1080/14686996.2018.1439253
10.1016/j.apcatb.2008.10.012
10.1002/anie.201402958
10.1002/ange.201402958
10.1103/PhysRevLett.118.036101
10.1016/j.cattod.2016.04.013
10.1021/acs.jpcc.7b08438
10.1002/cctc.201701841
10.1039/C9NR00959K
-
T. S. Choksi L. T. Roling V. Streibel F. Abild-Pedersen J. Phys. Chem. Lett. 2019 10 1852-18592019.
(
10.1021/acs.jpclett.9b00475
) 10.1103/PhysRevB.87.184115
10.1007/BF01908075
{'key': 'e_1_2_8_76_1', 'first-page': '583', 'volume': '3', 'author': 'Strehl A.', 'year': '2003', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. by Strehl A. (2003)- J. B. Hirschberg A. Rosenberg2007.
{'key': 'e_1_2_8_78_1', 'first-page': '231', 'volume': '1', 'author': 'Kriegel H.-P.', 'year': '2011', 'journal-title': 'Interdiscip. Sci. Rev.'}
/ Interdiscip. Sci. Rev. by Kriegel H.-P. (2011)- M. K. Pakhira 2014 International Conference on Computational Intelligence and Communication Networks 2014 pp. 1047–1051.
10.1093/comjnl/41.8.578
10.1021/acs.jpcc.7b02424
10.1007/BF00337288
10.1214/aoms/1177699147
10.1016/j.patcog.2012.06.010
{'key': 'e_1_2_8_85_1', 'first-page': '195', 'author': 'Tikhonov A. N.', 'year': '1943', 'journal-title': 'Dokl. Akad. Nauk SSSR'}
/ Dokl. Akad. Nauk SSSR by Tikhonov A. N. (1943)10.1137/0907087
10.1111/j.1467-9868.2005.00503.x
10.1021/acs.jpcc.5b02055
10.1021/acscatal.6b03403
10.1146/annurev-chembioeng-080615-034413
10.1002/anie.201402958
10.1002/ange.201402958
10.1021/acs.jpcc.5b10071
- K. P. Murphy Machine learning: a probabilistic perspective MIT press 2012.
- C. M. Bishop Pattern recognition and machine learning Springer 2006.
10.1038/s41524-018-0096-5
10.1038/nmat1752
10.1021/jp1048887
- O. Roy M. Vetterli 2007 15th European Signal Processing Conference 2007 pp. 606–610.
10.1103/PhysRevLett.104.136403
10.1038/ncomms14621
10.1021/acs.jpclett.6b01254
10.1023/A:1010933404324
10.1103/PhysRevB.89.094104
10.1016/j.ijhydene.2014.01.160
10.1021/acs.jpca.7b08750
10.1039/C7RA06622H
10.1038/ncomms13890
10.1063/1.5019779
10.1016/0920-5861(94)00148-U
-
H. Lukas S. G. Fries B. Sundman Computational Thermodynamics – The Calphad Method Cambridge 2007.
(
10.1017/CBO9780511804137
) 10.1016/S0079-6425(03)00025-2
10.1016/S0364-5916(02)00037-8
10.1016/j.calphad.2008.08.004
10.1016/S0364-5916(02)00036-6
10.1016/j.calphad.2016.05.002
10.1103/PhysRevB.85.235438
10.1038/s41467-018-06682-4
10.1021/acs.jpclett.8b03527
10.1103/PhysRevB.95.144110
10.1021/acs.chemmater.7b00156
10.1103/PhysRevLett.120.145301
10.1016/j.commatsci.2018.03.075
10.1016/j.commatsci.2018.05.018
10.1016/j.commatsci.2019.03.005
10.1038/s41524-017-0017-z
10.1021/acs.jpca.9b00311
10.1016/j.coche.2013.04.006
10.1021/cs200462f
10.1021/acs.jpclett.7b01974
10.1021/acs.jpclett.5b01660
10.1039/C7TA01812F
10.1039/C8CP00102B
10.1038/s41929-018-0142-1
10.1021/acs.jpclett.7b02010
10.1021/acs.jpcc.7b08686
10.1021/acs.jpcc.7b12670
10.1021/acs.jpcc.8b09284
10.1021/acscatal.8b04478
10.1016/0167-5729(86)90003-8
10.1002/anie.201808246
10.1103/PhysRevB.87.184115
-
B. Settles Synthesis Lectures on Artificial Intelligence and Machine Learning2012 6 1–114.
(
10.2200/S00429ED1V01Y201207AIM018
) - Z.-H. Han K.-S. Zhang inReal-World Applications of Genetic Algorithms(Ed.: O. Roeva) IntechOpen Rijeka 2012 Chapter 17.
10.1021/jacs.8b00947
10.1103/PhysRevLett.75.288
10.1016/0009-2614(96)00406-X
10.1021/jp970984n
10.1103/PhysRevLett.97.170201
10.1002/qua.24836
10.1021/acs.jpca.8b00160
10.1103/PhysRevLett.120.026102
- E. G. del Río J. J. Mortensen K. W. Jacobsen arXiv preprint arXiv:1808.085882018.
10.1063/1.5054968
10.1093/imamat/6.1.76
10.1093/comjnl/13.3.317
10.1090/S0025-5718-1970-0258249-6
10.1090/S0025-5718-1970-0274029-X
- H. Jónsson G. Mills K. W. Jacobsen1998.
10.1063/1.1329672
10.1063/1.4960708
10.1063/1.4986787
10.1103/PhysRevLett.122.156001
10.1002/jcc.23833
{'key': 'e_1_2_8_164_1', 'first-page': '5166', 'volume': '8', 'author': 'Sharada S. M.', 'year': '2012', 'journal-title': 'J. Comput. Chem.'}
/ J. Comput. Chem. by Sharada S. M. (2012)10.1021/acs.jctc.5b00407
- J. Zador H. N. Najm KinBot 1.0: a code for automatic PES exploration Sandia National Laboratories Technical Report No. SAND2012-8095 2013.
10.1021/acs.jctc.8b01182
10.1021/acscentsci.7b00064
- CatLearn Code arXiv:1904.00904 Accessed: 2019–04-01.
10.1038/srep19375
10.1126/science.1212858
10.1126/science.1215081
10.1021/cs5016657
10.1093/nsr/nwv023
10.1038/s41929-018-0162-x
10.1021/acscatal.8b03327
Dates
Type | When |
---|---|
Created | 6 years, 3 months ago (May 15, 2019, 1:20 p.m.) |
Deposited | 1 year, 1 month ago (July 17, 2024, 10:25 p.m.) |
Indexed | 2 weeks, 5 days ago (Aug. 2, 2025, 1:16 a.m.) |
Issued | 6 years, 2 months ago (June 18, 2019) |
Published | 6 years, 2 months ago (June 18, 2019) |
Published Online | 6 years, 2 months ago (June 18, 2019) |
Published Print | 6 years ago (Aug. 21, 2019) |
Funders
1
Basic Energy Sciences
10.13039/100006151
Region: Americas
gov (National government)
Labels
6
- Office of Basic Energy Sciences
- DOE Office of Basic Energy Sciences
- US Department of Energy's Basic Energy Sciences
- DOE Basic Energy Sciences
- Department of Energy Basic Energy Sciences Program
- BES
Awards
1
- DE-AC02-76SF00515
@article{Schlexer_Lamoureux_2019, title={Machine Learning for Computational Heterogeneous Catalysis}, volume={11}, ISSN={1867-3899}, url={http://dx.doi.org/10.1002/cctc.201900595}, DOI={10.1002/cctc.201900595}, number={16}, journal={ChemCatChem}, publisher={Wiley}, author={Schlexer Lamoureux, Philomena and Winther, Kirsten T. and Garrido Torres, Jose Antonio and Streibel, Verena and Zhao, Meng and Bajdich, Michal and Abild‐Pedersen, Frank and Bligaard, Thomas}, year={2019}, month=jun, pages={3581–3601} }