Crossref journal-article
Wiley
Chemistry & Biodiversity (311)
Abstract

AbstractIn view of the important role arginine plays in living organisms as the free amino acid and, especially, as a residue in peptides and proteins, the homologous β‐homoarginines are central in our investigations of β‐peptides (Fig. 1). The preparation of β2‐homoarginine derivatives suitably protected for solution‐ or solid‐phase peptide syntheses is described with full experimental detail (9 and 12 in Scheme 1). The readily available Fmoc‐β3hArg(Boc)2‐OH is used for manual solid‐phase synthesis of β3‐oligoarginines (on Rink amide or Rink amide AM resin) either by single amino acid coupling (Scheme 3) or, much better, by dimer‐fragment coupling (Scheme 4). In this way, β3‐oligoarginine amides composed of 4, 6, 7, 8, and 10 residues, both with and without fluorescein labelling, were synthesized (Schemes 2–4), purified by preparative HPLC and identified by high‐resolution mass spectrometry. The free amino acids (R)‐ and (S)‐H‐β2hArg‐OH and (S)‐H‐β3hArg‐OH were tested for their ability to function as substrates for NO synthase (iNOS); the β3‐oligoarginine amides (5, 6, and 7 residues) were tested for antibacterial (against six pathogens) and hemolytic (against rat and human erythrocytes) activities. All test results were negative: none of the free β‐homoarginines induced NO formation (Fig. 3), and there was no lysis of erythrocytes (concentrations up to 100 μM; Table 1), and no significant antibiotic activity (MIC≥64 μg/ml; Table 2). Cell‐penetration studies with the fluorescence‐labelled, peptidase‐resistant β3‐oligoarginine amides were carried out with HeLa cells and human foreskin keratinocytes (HFKs). The results obtained with fluorescence microscopy are: i) the longer‐chain β‐oligoarginine amides (8 and 10 residues; Figs. 4–6) enter the cells and end up in the nuclei, especially in the nucleoli, irrespective of temperature (37° and 4° with HFKs) or pretreatment with NaN3 (with HFKs), indicating a non‐endocytotic and non‐energy‐dependent uptake mechanism; ii) the β‐tetraarginine derivative occupies the cell surface but does not enter the cells (with HeLa); iii) the cell‐growth rate of the HFKs is not affected by a 1‐μM concentration of the fluorescence‐labelled β‐octaarginine amide (Fig. 7), i.e., there is no antiproliferative effect. In vivo experiments with mouse skin and the β‐octaarginine derivative show migration of the β‐peptide throughout the epidermis (Fig. 8). As a contribution to understanding the mechanism, we have also studied the behavior of fluorescence‐labelled β‐octa‐ and β‐decaarginine amides (TFA salts) towards giant unilamellar vesicles (GUVs) built of neutral (POPC) or anionic (POPC/POPG mixtures) phospholipids: the β‐oligoarginine amides bind tightly to the surface of anionic GUVs but do not penetrate the lipid bilayer (Fig. 9) as they do with living cells. In contrast, a β‐heptapeptide FL‐22, which had been used as a negative control sample for the cell‐penetration experiments, entered the GUVs of negative surface charge. Thus, the mechanisms of cell and GUV‐model penetration appear to be different. Finally, the possible applications and implications of the ‘protein transduction’ by β‐oligoarginines are discussed.

Bibliography

Seebach, D., Namoto, K., Mahajan, Y. R., Bindschädler, P., Sustmann, R., Kirsch, M., Ryder, N. S., Weiss, M., Sauer, M., Roth, C., Werner, S., Beer, H., Munding, C., Walde, P., & Voser, M. (2004). Chemical and Biological Investigations of β‐Oligoarginines. Chemistry & Biodiversity, 1(1), 65–97. Portico.

Authors 15
  1. Dieter Seebach (first)
  2. Kenji Namoto (additional)
  3. Yogesh R. Mahajan (additional)
  4. Pascal Bindschädler (additional)
  5. Reiner Sustmann (additional)
  6. Michael Kirsch (additional)
  7. Neil S. Ryder (additional)
  8. Markus Weiss (additional)
  9. Markus Sauer (additional)
  10. Christian Roth (additional)
  11. Sabine Werner (additional)
  12. Hans‐Dietmar Beer (additional)
  13. Christine Munding (additional)
  14. Peter Walde (additional)
  15. Matthias Voser (additional)
References 100 Referenced 69
  1. J. M. Berg L. Stryer J. L. Tymoczko
  2. 10.1016/S0753-3322(02)00284-6
  3. 10.1016/S0753-3322(02)00273-1
  4. 10.1152/ajplegacy.1973.224.1.127
  5. {'key': 'e_1_2_1_5_2', 'volume': '259', 'author': 'Dhanakoti S. N.', 'year': '1990', 'journal-title': 'Am. J. Physiol.'} / Am. J. Physiol. by Dhanakoti S. N. (1990)
  6. 10.1016/S0304-4165(98)00086-5
  7. 10.1002/jcp.1041330316
  8. 10.1042/bj2600001
  9. 10.1016/S0021-9258(18)73844-1 / J. Biol. Chem. by Foster G. L. (1939)
  10. 10.1073/pnas.84.18.6369
  11. 10.1038/333664a0
  12. 10.1016/0014-2999(88)90101-X
  13. 10.1021/bi952930e
  14. 10.1074/jbc.R000003200
  15. 10.1006/jmbi.1995.0559
  16. 10.1006/jmbi.2001.4857
  17. 10.1073/pnas.082522999
  18. 10.1002/prot.340060102
  19. 10.1021/bi00417a058
  20. 10.1021/bi034162u
  21. 10.1016/S0003-9861(02)00052-8
  22. 10.1006/jmbi.2000.4040
  23. 10.1126/science.2028256
  24. 10.1021/cr9603744
  25. 10.1073/pnas.96.17.9459
  26. 10.1083/jcb.200206062
  27. 10.2533/chimia.2001.831 / Chimia by Seebach D. (2001)
  28. 10.2174/092986730610220401154606
  29. 10.1039/a704933a
  30. 10.1021/cr000045i
  31. 10.1021/cr990120t
  32. 10.1002/1522-2675(200205)85:5<1197::AID-HLCA1197>3.0.CO;2-E
  33. 10.1002/1522-2675(200209)85:9<2577::AID-HLCA2577>3.0.CO;2-D
  34. 10.1021/ja003689g
  35. 10.1002/hlca.19960790402
  36. 10.1002/1439-7633(20010601)2:6<445::AID-CBIC445>3.0.CO;2-R
  37. {'key': 'e_1_2_1_37_2', 'author': 'Hook D. F.', 'year': '2004', 'journal-title': 'ChemBioChem'} / ChemBioChem by Hook D. F. (2004)
  38. 10.1002/bdd.334
  39. 10.1021/jm010816q
  40. 10.1002/1439-7633(20011001)2:10<771::AID-CBIC771>3.0.CO;2-#
  41. 10.1002/cbic.200300698
  42. 10.1002/hlca.19980810202
  43. {'key': 'e_1_2_1_43_2', 'author': 'Rueping M.', 'year': '2004', 'journal-title': 'Chem.\uf8ffEur. J.'} / Chem.Eur. J. by Rueping M. (2004)
  44. 10.1002/(SICI)1522-2675(19981111)81:11<2093::AID-HLCA2093>3.0.CO;2-X
  45. 10.1002/1522-2675(200206)85:6<1546::AID-HLCA1546>3.0.CO;2-2
  46. 10.1002/hlca.200390149
  47. 10.1002/(SICI)1522-2675(19981216)81:12<2141::AID-HLCA2141>3.0.CO;2-5
  48. 10.1002/hlca.19960790402
  49. 10.1002/hlca.19960790802
  50. 10.1034/j.1399-3011.1999.00131.x
  51. 10.1016/S0010-8545(01)00446-5
  52. {'key': 'e_1_2_1_52_2', 'first-page': '211', 'volume': '5', 'author': 'Gruetter C. A.', 'year': '1979', 'journal-title': 'J. Cyclic Nucleotide Res.'} / J. Cyclic Nucleotide Res. by Gruetter C. A. (1979)
  53. 10.1182/blood.V57.5.946.946
  54. {'key': 'e_1_2_1_54_2', 'first-page': '653', 'volume': '23', 'author': 'Mellion B. T.', 'year': '1983', 'journal-title': 'Mol. Pharmacol.'} / Mol. Pharmacol. by Mellion B. T. (1983)
  55. 10.1146/annurev.neuro.26.041002.131047
  56. 10.1007/s000180050352
  57. R. D. Hurst J. B. Clark
  58. 10.4049/jimmunol.146.8.2719 / J. Immunol. by Mills C. D. (1991)
  59. 10.1021/bi992992v
  60. 10.1016/S1367-5931(02)00385-X
  61. 10.1073/pnas.082046199
  62. 10.1021/ja0107475
  63. 10.1093/jac/35.6.721
  64. 10.1046/j.1432-1033.2003.03484.x
  65. 10.1016/0092-8674(88)90262-0
  66. 10.1016/0092-8674(88)90263-2
  67. 10.1074/jbc.272.25.16010
  68. 10.1016/S0021-9258(17)34080-2
  69. 10.1096/fsb2fasebj.12.1.67
  70. 10.1006/bbrc.1997.8050
  71. 10.1016/S0005-2736(97)00141-7
  72. 10.1016/S0165-6147(00)01447-4
  73. 10.1016/S0962-8924(00)01771-2
  74. {'key': 'e_1_2_1_74_2', 'unstructured': ''}
  75. 10.1002/1439-7633(20020301)3:2/3<257::AID-CBIC257>3.0.CO;2-S
  76. 10.1021/ja017283v
  77. 10.1016/S0960-894X(02)00885-5
  78. 10.1034/j.1399-3011.2000.00723.x
  79. 10.1073/pnas.97.24.13003
  80. 10.1074/jbc.M007540200
  81. {'key': 'e_1_2_1_81_2', 'author': 'Sakai N.', 'year': '2003', 'journal-title': 'J. Am. Chem. Soc.'} / J. Am. Chem. Soc. by Sakai N. (2003)
  82. 10.1074/jbc.M301726200
  83. 10.1074/jbc.M209548200
  84. 10.1016/S0165-6147(99)01429-7
  85. 10.1074/jbc.M110017200
  86. 10.1016/0022-1759(83)90303-4
  87. 10.1074/jbc.271.30.18188
  88. 10.1021/ja0275109
  89. 10.1002/med.10056
  90. 10.1021/ja021337z
  91. 10.1039/dc9868100303
  92. 10.1021/la971318g
  93. 10.1007/BFb0114171
  94. 10.1002/hlca.200390133
  95. 10.1021/jo00263a052
  96. 10.1016/0003-2697(76)90034-8
  97. W. C. Chang
  98. 10.1002/1522-2675(20001220)83:12<3139::AID-HLCA3139>3.0.CO;2-W
  99. 10.1074/jbc.M211779200
  100. ‘Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard.’5th edn. NCCLS document Vol. M7‐A5 2000 National Committee for Clinical Laboratory Standards: Wayne PA.
Dates
Type When
Created 21 years, 6 months ago (Feb. 4, 2004, 7:02 a.m.)
Deposited 1 year, 9 months ago (Nov. 17, 2023, 12:52 p.m.)
Indexed 1 year ago (July 30, 2024, 9:32 p.m.)
Issued 21 years, 7 months ago (Jan. 1, 2004)
Published 21 years, 7 months ago (Jan. 1, 2004)
Published Online 21 years, 6 months ago (Feb. 3, 2004)
Published Print 21 years, 7 months ago (Jan. 1, 2004)
Funders 0

None

@article{Seebach_2004, title={Chemical and Biological Investigations of β‐Oligoarginines}, volume={1}, ISSN={1612-1880}, url={http://dx.doi.org/10.1002/cbdv.200490014}, DOI={10.1002/cbdv.200490014}, number={1}, journal={Chemistry &amp; Biodiversity}, publisher={Wiley}, author={Seebach, Dieter and Namoto, Kenji and Mahajan, Yogesh R. and Bindschädler, Pascal and Sustmann, Reiner and Kirsch, Michael and Ryder, Neil S. and Weiss, Markus and Sauer, Markus and Roth, Christian and Werner, Sabine and Beer, Hans‐Dietmar and Munding, Christine and Walde, Peter and Voser, Matthias}, year={2004}, month=jan, pages={65–97} }