Abstract
AbstractTheoretical calculations are conducted on the helix–coil transition of DNA, in the presence of large, cooperatively binding ligands modeled after the DNA‐binding proteins of current biological interest. The ligands are allowed to bind both to helx and to coil, to cover up any number of bases or base pairs in the complex, and to interact cooperatively with their nearest neighbors. The DNA is treated in the infinite homogeneous Ising model approximation, and all calculations are done by Lifson's method of sequence‐generating functions. DNA melting curves are calculated by computer in order to expolore the effects on the transition of ligand size, binding constant, free activity, and ligand–ligand cooperativity. The calculations indicate that (1) at the same intrinsic free energy change per base pair of the complexes, small ligands, for purely entropic reasons, are more effective than are large ligands in shifting the DNA melting temperature; (2) the response of the DNA melting temperature to increased ligand binding constant K and/or free ligand activity L is adequately represented at high values of KL (but not at low KL) by a simple independent site model; (3) if curves are calculated with the total amount of added ligand remaining constant and the free ligand activity allowed to vary throughout the transition, biphasic melting curves can be obtained in the complete absence of ligand–ligand cooperativity. In an Appendix, the denaturation of poly[d(A‐T)] in the presence of the drug, netropsin, is used to verify some features of the theory and to illustrate how the theory can be used to obtain numerical estimates of the ligand binding parameters from the experimental melting curves.
References
56
Referenced
242
10.1016/S0021-9258(19)42077-2
10.1073/pnas.71.12.4808
10.1101/SQB.1968.033.01.033
10.1073/pnas.69.12.3537
10.1007/BF00271243
10.1073/pnas.70.6.1846
10.1128/jvi.15.2.348-354.1975
{'key': 'e_1_2_1_9_2', 'volume': '32', 'author': 'Herrick G.', 'year': '1973', 'journal-title': 'Fed. Proc.'}
/ Fed. Proc. by Herrick G. (1973)10.1016/0012-1606(71)90110-2
10.1016/0022-2836(72)90269-0
10.1016/0022-2836(72)90268-9
10.1073/pnas.50.4.644
- Jensen D. E.(1974) Ph.D. dissertation University of Oregon.Jensen D. E. Kelly R. C.&Von Hippel P. H. manuscript submitted.
10.1038/2271313a0
10.1021/bi00862a040
10.1002/bip.1968.360060411
{'key': 'e_1_2_1_18_2', 'first-page': '245', 'volume': '5', 'author': 'Zasedatelev A. S.', 'year': '1971', 'journal-title': 'Mol. Biol. (Russ.)'}
/ Mol. Biol. (Russ.) by Zasedatelev A. S. (1971)10.1002/ijch.197400021
10.1016/0022-2836(74)90031-X
{'key': 'e_1_2_1_21_2', 'volume-title': 'Theory of Helix‐Coil Transitions in Biopolymers', 'author': 'Poland D.', 'year': '1970'}
/ Theory of Helix‐Coil Transitions in Biopolymers by Poland D. (1970){'key': 'e_1_2_1_22_2', 'volume-title': 'Conformations of Macromolecules', 'author': 'Birshtein T. M.', 'year': '1966'}
/ Conformations of Macromolecules by Birshtein T. M. (1966)10.1021/j100882a015
10.1002/bip.1970.360091102
10.1002/bip.360101110
10.1021/j150570a005
10.1021/j150577a045
10.1002/bip.1966.360040802
{'key': 'e_1_2_1_29_2', 'first-page': '621', 'volume': '6', 'author': 'Frank‐Kamenetskii M. D.', 'year': '1972', 'journal-title': 'Mol. Biol. (Russ.)'}
/ Mol. Biol. (Russ.) by Frank‐Kamenetskii M. D. (1972)10.1063/1.1725077
10.1016/B978-0-12-395638-5.50021-5
10.1016/0022-2836(69)90244-7
10.1016/0022-2836(70)90225-1
10.1016/S0022-2836(65)80037-7
10.1016/S0021-9258(19)42119-4
/ J. Biol. Chem. by Wartell R. M. (1974)10.1007/BF00309567
10.1016/0022-2836(72)90259-8
10.1016/S0022-2836(68)80024-5
10.1007/978-1-4684-1815-6_2
10.1021/bi00750a017
10.1093/nar/2.3.361
10.1002/bip.1969.360080605
10.1016/S0021-9258(19)41671-2
10.1016/0022-2836(72)90184-2
- Revzin A. Wang A.&von Hippel(1975) in preparation.
- Kelly R. C.(1975) Ph.D. dissertation University of Oregon.
10.1016/S0022-2836(62)80119-3
10.1002/jcp.1030640403
10.1016/0022-2836(67)90324-5
10.1021/bi00836a014
10.1021/bi00836a015
10.1021/bi00783a006
10.1021/bi00784a030
10.1016/0022-2836(71)90250-6
10.1016/S0079-6603(08)60122-1
{'key': 'e_1_2_1_56_2', 'first-page': '301', 'volume-title': 'Physical Chemistry of Nucleic Acids', 'author': 'Bloomfield V. A.', 'year': '1974'}
/ Physical Chemistry of Nucleic Acids by Bloomfield V. A. (1974)10.1016/S0022-2836(65)80052-3
Dates
Type | When |
---|---|
Created | 20 years, 8 months ago (Dec. 30, 2004, 11:55 p.m.) |
Deposited | 1 year, 9 months ago (Nov. 11, 2023, 11:45 p.m.) |
Indexed | 2 months ago (July 4, 2025, 7:26 a.m.) |
Issued | 49 years, 2 months ago (July 1, 1976) |
Published | 49 years, 2 months ago (July 1, 1976) |
Published Online | 21 years, 7 months ago (Feb. 1, 2004) |
Published Print | 49 years, 2 months ago (July 1, 1976) |
@article{McGhee_1976, title={Theoretical calculations of the helix–coil transition of DNA in the presence of large, cooperatively binding ligands}, volume={15}, ISSN={1097-0282}, url={http://dx.doi.org/10.1002/bip.1976.360150710}, DOI={10.1002/bip.1976.360150710}, number={7}, journal={Biopolymers}, publisher={Wiley}, author={McGhee, James D.}, year={1976}, month=jul, pages={1345–1375} }