10.1002/anie.201007987
Crossref journal-article
Wiley
Angewandte Chemie International Edition (311)
Abstract

AbstractThe future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable, and efficient systems for the conversion and storage of renewable energy sources, such as solar energy. The production of hydrogen, a fuel with remarkable properties, through sunlight‐driven water splitting appears to be a promising and appealing solution. While the active sites of enzymes involved in the overall water‐splitting process in natural systems, namely hydrogenases and photosystem II, use iron, nickel, and manganese ions, cobalt has emerged in the past five years as the most versatile non‐noble metal for the development of synthetic H2‐ and O2‐evolving catalysts. Such catalysts can be further coupled with photosensitizers to generate photocatalytic systems for light‐induced hydrogen evolution from water.

Bibliography

Artero, V., Chavarot‐Kerlidou, M., & Fontecave, M. (2011). Splitting Water with Cobalt. Angewandte Chemie International Edition, 50(32), 7238–7266. Portico.

Authors 3
  1. Vincent Artero (first)
  2. Murielle Chavarot‐Kerlidou (additional)
  3. Marc Fontecave (additional)
References 250 Referenced 1,308
  1. 10.1073/pnas.0710683104
  2. 10.1021/cr100246c
  3. 10.1073/pnas.0509498103
  4. 10.1038/nature09913
  5. 10.1104/pp.122.1.127
  6. 10.1104/pp.010498
  7. 10.1016/S0167-7799(00)01511-0
  8. 10.1039/b916246a
  9. 10.1016/S1369-7021(08)70250-5
  10. 10.1557/mrs2008.78
  11. 10.1039/B802262N
  12. 10.1021/cr050195z
  13. 10.1021/ar9801301
  14. 10.1039/b801198m
  15. 10.1021/ar9001697
  16. 10.1016/j.ccr.2008.10.010
  17. 10.1016/j.jphotochemrev.2008.01.002
  18. 10.1039/cs9962500041
  19. 10.1021/ar700282n
  20. 10.1021/ar9901220
  21. 10.1021/jo060225d
  22. 10.1021/ar9001735
  23. 10.1039/B910564F
  24. 10.1021/cr800542q
  25. 10.1039/B713567J
  26. 10.1002/ejic.200700067
  27. 10.1002/chem.200900854
  28. 10.1016/j.jorganchem.2009.02.014
  29. 10.1039/B912690B
  30. 10.1002/ejic.201000944
  31. V. Fourmond S. Canaguier B. Golly M. J. Field M. Fontecave V. Artero Energy Environ. Sci.2011 DOI:.
  32. 10.1021/ja902570u
  33. 10.1039/c001675f
  34. 10.1021/ja105312p
  35. 10.1002/ange.200801132
  36. 10.1002/anie.200801132
  37. 10.1021/ic802052u
  38. 10.1021/ic9017486
  39. 10.1002/ange.201004278
  40. 10.1002/anie.201004278
  41. 10.1002/ange.200705652
  42. 10.1002/anie.200705652
  43. 10.1021/ja077837f
  44. 10.1002/ange.200802659
  45. 10.1002/anie.200802659
  46. 10.1021/ar900249x
  47. 10.1039/b912669d
  48. 10.1002/cssc.201000062
  49. 10.1016/j.ccr.2005.01.014
  50. 10.1016/j.ccr.2010.06.004
  51. 10.1021/ja00544a035
  52. 10.1021/ja067876b
  53. 10.1021/ic00209a011
  54. 10.1021/ic00236a006
  55. 10.1021/ic050167z
  56. 10.1021/ic061625m
  57. 10.1039/b509188h
  58. 10.1016/j.elecom.2006.08.036
  59. 10.1073/pnas.0907775106
  60. 10.1039/B921559J
  61. 10.1021/ja00293a035
  62. 10.1021/ic00197a036
  63. 10.1021/ja00322a051
  64. 10.1016/0010-8545(85)80058-8
  65. 10.1039/B915846D
  66. 10.1021/ic981425d
  67. 10.1039/c39820000681
  68. 10.1002/ange.200803643
  69. 10.1002/anie.200803643
  70. 10.1021/ic00236a007
  71. 10.1002/cber.19871200615
  72. 10.1039/b805309j
  73. 10.1021/om100395r
  74. 10.1039/b913946j
  75. 10.1002/(SICI)1099-1581(199809)9:9<559::AID-PAT818>3.0.CO;2-1
  76. 10.1016/S1381-1169(99)00013-8
  77. 10.1021/ic101187v
  78. 10.1002/ange.201000629
  79. 10.1002/anie.201000629
  80. 10.1021/ic060984e
  81. Homoconjugation a phenomenon in which the conjugate base is stabilized by hydrogen bond to the acid further complicates the determination of the overpotential.
  82. 10.1016/S0022-0728(80)80508-0
  83. 10.1016/S0022-0728(02)01257-3
  84. 10.1016/j.jelechem.2004.05.017
  85. 10.1016/S0022-0728(03)00379-6
  86. 10.1002/jcc.20200
  87. 10.1002/jcc.20201
  88. 10.1002/jcc.20256
  89. Linearity is generally lost for higher concentrations of acid for which diffusion of the substrate is no longer limiting.
  90. 10.1126/science.1179773
  91. 10.1002/ange.201005427
  92. 10.1002/anie.201005427
  93. 10.1021/ja00735a040
  94. 10.1021/ja9039345
  95. 10.1021/om00054a058
  96. 10.1021/ja028446y
  97. 10.1002/ejic.200901176
  98. 10.1021/ja00417a015
  99. 10.1021/ic011109q
  100. 10.1021/ic00156a017
  101. The process is only observed at very negative potentials and is rapidly followed by reduction to the Co0state in an irreversible two‐electron process.
  102. 10.1021/ja00469a022
  103. {'key': 'e_1_2_8_96_2', 'volume-title': 'Acid‐Base Dissociation Constants in Dipolar Aprotic Solvents', 'author': 'Izutsu K.', 'year': '1990'} / Acid‐Base Dissociation Constants in Dipolar Aprotic Solvents by Izutsu K. (1990)
  104. The calculation for the heterolytic pathway can only be carried out if the cycle involves two consecutive protonation reactions that are combined to form the so‐called H2evolution step.
  105. 10.1021/ja954326x
  106. Weak acids such as Et3NH+in CH3CN that are unable to protonate CoI can protonate “Co0”; H2evolution can then be catalyzed by the formation of a CoIIhydride species.
  107. 10.1002/ange.200702953
  108. 10.1002/anie.200702953
  109. 10.1021/ja109351h
  110. In that case there is a large excess of CoIrelative to protons.
  111. 10.1021/ja00073a025
  112. 10.1021/ic00165a010
  113. 10.1016/j.crci.2010.01.013
  114. 10.1021/ic020610v
  115. 10.1021/ja056442y
  116. In that case protonation of the ligand occurs before reduction at the metal and results in rapid elimination of the ligand from the cobalt coordination sphere.
  117. 10.1021/cr050191u
  118. 10.1039/b903809d
  119. 10.1021/ja00055a032
  120. 10.1021/j100031a020
  121. 10.1021/jp9939569
  122. 10.1021/jp991423u
  123. 10.1073/pnas.79.2.701
  124. 10.1021/ic9015228
  125. 10.1021/ic900389z
  126. 10.1002/hlca.19790620449
  127. 10.1021/ja00392a022
  128. 10.1021/ic100036v
  129. {'key': 'e_1_2_8_121_2', 'first-page': '449', 'volume': '1', 'author': 'Lehn J. M.', 'year': '1977', 'journal-title': 'New J. Chem.'} / New J. Chem. by Lehn J. M. (1977)
  130. {'key': 'e_1_2_8_122_2', 'first-page': '547', 'volume': '2', 'author': 'Moradpour A.', 'year': '1978', 'journal-title': 'New J. Chem.'} / New J. Chem. by Moradpour A. (1978)
  131. 10.1021/ja1088869
  132. 10.1021/ic00211a018
  133. 10.1021/ic00159a001
  134. 10.1002/hlca.19860690514
  135. 10.1021/ja00398a066
  136. 10.1002/ijch.198200020
  137. 10.1016/S0360-3199(96)00133-4
  138. 10.1021/ja00499a051
  139. {'key': 'e_1_2_8_131_2', 'first-page': '271', 'volume': '7', 'author': 'Hawecker J.', 'year': '1983', 'journal-title': 'New J. Chem.'} / New J. Chem. by Hawecker J. (1983)
  140. 10.1016/0360-3199(89)90029-3
  141. 10.1021/ja0427101
  142. 10.1021/ar900253e
  143. 10.1039/b812605b
  144. 10.1021/jp106512a
  145. P. Zhang M. Chavarot‐Kerlidou P.‐A. Jacques M. Wang L. Sun M. Fontecave V. Artero unpublished results.
  146. 10.1021/ic8013255
  147. 10.1021/ja804650g
  148. 10.1021/ic101731j
  149. 10.1021/ja903044n
  150. 10.1021/ja1057357
  151. 10.1016/j.jorganchem.2009.04.041
  152. 10.1021/ja058087h
  153. 10.1246/cl.2007.920
  154. 10.1002/ange.200600543
  155. 10.1002/anie.200600543
  156. 10.1002/ange.200906595
  157. 10.1002/anie.200906595
  158. 10.1021/ja073123t
  159. 10.1126/science.1062965
  160. 10.1039/c0cc02486d
  161. 10.1039/c0cc03154b
  162. 10.1021/jp1023636
  163. 10.1039/c0cc04658b
  164. {'key': 'e_1_2_8_154_2', 'first-page': '157', 'volume': '16', 'author': 'Kölle U.', 'year': '1992', 'journal-title': 'New J. Chem.'} / New J. Chem. by Kölle U. (1992)
  165. 10.1021/ja0776780
  166. A similar description of the excited and oxidized states holds for the other iridium and rhenium diimine photosensitizers discussed in this section.
  167. 10.1016/0010-8545(88)80032-8
  168. This contrasts with electrocatalytic studies in which the interfacial electron transfer at the electrode is generally not considered as the kinetic bottleneck for H2evolution.
  169. 10.1039/b926749b
  170. 10.1021/ic00209a012
  171. 10.1016/0013-4686(96)00088-6
  172. 10.1016/0013-4686(84)85004-5
  173. {'key': 'e_1_2_8_163_2', 'volume-title': 'Electrodes of Conductive Metal Oxides', 'author': 'Tarasevich M. R.', 'year': '1980'} / Electrodes of Conductive Metal Oxides by Tarasevich M. R. (1980)
  174. 10.1002/ange.201003110
  175. 10.1002/anie.201003110
  176. 10.1021/ja809108y
  177. Nickel oxide is classically the basis of active anodes used for alkaline electrolysis with a similar overpotential requirement.
  178. 10.1021/ar900225y
  179. 10.1039/c0cc01828g
  180. 10.1021/ja00378a053
  181. 10.1021/ic900538g
  182. 10.1021/ja901373m
  183. 10.1021/ja01286a049
  184. 10.1016/0022-1902(69)80026-6
  185. {'key': 'e_1_2_8_174_2', 'first-page': '548', 'author': 'Veprek‐Siska J.', 'year': '1967', 'journal-title': 'Chem. Ind.'} / Chem. Ind. by Veprek‐Siska J. (1967)
  186. 10.1039/tf9686400744
  187. {'key': 'e_1_2_8_176_2', 'first-page': '81', 'volume': '4', 'author': 'Shafirovich V. Y.', 'year': '1980', 'journal-title': 'New J. Chem.'} / New J. Chem. by Shafirovich V. Y. (1980)
  188. 10.1021/ja00987a010
  189. {'key': 'e_1_2_8_178_2', 'first-page': '199', 'volume': '2', 'author': 'Shafirovich V. Y.', 'year': '1978', 'journal-title': 'New J. Chem.'} / New J. Chem. by Shafirovich V. Y. (1978)
  190. 10.1021/ja00352a050
  191. 10.1126/science.1185372
  192. 10.1039/C39730000139
  193. 10.1016/S0022-0728(00)00381-8
  194. 10.1016/0013-4686(94)85162-X
  195. 10.1016/0013-4686(64)80016-5
  196. 10.1016/0013-4686(64)80017-7
  197. O.Suzuki M.Takahashi T.Fukunaga J.Kuboyama US Patent 3 399 966 1968.
  198. 10.1149/1.2115870
  199. 10.1149/1.2069451
  200. 10.1149/1.2069396
  201. 10.1149/1.2069201
  202. 10.1016/0021-9517(91)90325-X
  203. 10.1149/1.2086224
  204. 10.1149/1.2085465
  205. 10.1149/1.2086225
  206. 10.1149/1.2086226
  207. 10.1149/1.2085762
  208. 10.1016/S0025-5408(01)00739-5
  209. 10.1039/b919370g
  210. 10.1016/S1452-3981(23)15532-5
  211. 10.1016/j.tsf.2006.11.056
  212. 10.1016/0013-4686(90)90030-4
  213. 10.1021/jp904022e
  214. 10.1016/j.elecom.2007.01.044
  215. 10.1039/c002074e
  216. 10.1016/j.jelechem.2009.11.024
  217. 10.1126/science.1162018
  218. 10.1021/ja807769r
  219. 10.1021/ja1023767
  220. 10.1021/ja902121f
  221. 10.1002/cctc.201000126
  222. 10.1039/c0ee00177e
  223. 10.1039/C0EE00518E
  224. 10.1021/ja106102b
  225. 10.1021/ja1013344
  226. 10.1021/ja900023k
  227. 10.1039/tf9504600820
  228. 10.1002/cssc.201000161
  229. The same is true for other anions such as borate and methylphosphonate.[213]
  230. 10.1039/F29817702373
  231. 10.1039/c0ee00585a
  232. 10.1039/f19888402795
  233. 10.1002/ange.200805534
  234. 10.1002/anie.200805534
  235. 10.1021/ja109681d
  236. 10.1021/ja052595
  237. 10.5796/electrochemistry.68.651 / Electrochemistry by Nagashima K. (2000)
  238. 10.1002/ange.200504454
  239. 10.1002/anie.200504454
  240. 10.1021/ja064380l
  241. 10.1021/ja9016478
  242. 10.1021/ja908730h
  243. 10.1073/pnas.0910203106
  244. D. G.Nocera M. W.Kanan T. A.Moore Y.Surendranath S. Y.Reece A. J.Esswein WO 042197A1 2010.
  245. 10.1038/35104607
  246. 10.1039/c0dt00454e
  247. 10.1021/ja101578m
  248. 10.1149/1.2412052
  249. 10.1038/nchem.1049
  250. J. Luo N. P. Rath L. M. Mirica Inorg. Chem.2011 DOI:.
Dates
Type When
Created 14 years, 1 month ago (July 11, 2011, 10:16 a.m.)
Deposited 1 year, 10 months ago (Oct. 16, 2023, 7:40 p.m.)
Indexed 4 days ago (Aug. 31, 2025, 6:37 a.m.)
Issued 14 years, 1 month ago (July 11, 2011)
Published 14 years, 1 month ago (July 11, 2011)
Published Online 14 years, 1 month ago (July 11, 2011)
Published Print 14 years, 1 month ago (Aug. 1, 2011)
Funders 0

None

@article{Artero_2011, title={Splitting Water with Cobalt}, volume={50}, ISSN={1521-3773}, url={http://dx.doi.org/10.1002/anie.201007987}, DOI={10.1002/anie.201007987}, number={32}, journal={Angewandte Chemie International Edition}, publisher={Wiley}, author={Artero, Vincent and Chavarot‐Kerlidou, Murielle and Fontecave, Marc}, year={2011}, month=jul, pages={7238–7266} }