Abstract
AbstractThe future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable, and efficient systems for the conversion and storage of renewable energy sources, such as solar energy. The production of hydrogen, a fuel with remarkable properties, through sunlight‐driven water splitting appears to be a promising and appealing solution. While the active sites of enzymes involved in the overall water‐splitting process in natural systems, namely hydrogenases and photosystem II, use iron, nickel, and manganese ions, cobalt has emerged in the past five years as the most versatile non‐noble metal for the development of synthetic H2‐ and O2‐evolving catalysts. Such catalysts can be further coupled with photosensitizers to generate photocatalytic systems for light‐induced hydrogen evolution from water.
References
250
Referenced
1,308
10.1073/pnas.0710683104
10.1021/cr100246c
10.1073/pnas.0509498103
10.1038/nature09913
10.1104/pp.122.1.127
10.1104/pp.010498
10.1016/S0167-7799(00)01511-0
10.1039/b916246a
10.1016/S1369-7021(08)70250-5
10.1557/mrs2008.78
10.1039/B802262N
10.1021/cr050195z
10.1021/ar9801301
10.1039/b801198m
10.1021/ar9001697
10.1016/j.ccr.2008.10.010
10.1016/j.jphotochemrev.2008.01.002
10.1039/cs9962500041
10.1021/ar700282n
10.1021/ar9901220
10.1021/jo060225d
10.1021/ar9001735
10.1039/B910564F
10.1021/cr800542q
10.1039/B713567J
10.1002/ejic.200700067
10.1002/chem.200900854
10.1016/j.jorganchem.2009.02.014
10.1039/B912690B
10.1002/ejic.201000944
- V. Fourmond S. Canaguier B. Golly M. J. Field M. Fontecave V. Artero Energy Environ. Sci.2011 DOI:.
10.1021/ja902570u
10.1039/c001675f
10.1021/ja105312p
10.1002/ange.200801132
10.1002/anie.200801132
10.1021/ic802052u
10.1021/ic9017486
10.1002/ange.201004278
10.1002/anie.201004278
10.1002/ange.200705652
10.1002/anie.200705652
10.1021/ja077837f
10.1002/ange.200802659
10.1002/anie.200802659
10.1021/ar900249x
10.1039/b912669d
10.1002/cssc.201000062
10.1016/j.ccr.2005.01.014
10.1016/j.ccr.2010.06.004
10.1021/ja00544a035
10.1021/ja067876b
10.1021/ic00209a011
10.1021/ic00236a006
10.1021/ic050167z
10.1021/ic061625m
10.1039/b509188h
10.1016/j.elecom.2006.08.036
10.1073/pnas.0907775106
10.1039/B921559J
10.1021/ja00293a035
10.1021/ic00197a036
10.1021/ja00322a051
10.1016/0010-8545(85)80058-8
10.1039/B915846D
10.1021/ic981425d
10.1039/c39820000681
10.1002/ange.200803643
10.1002/anie.200803643
10.1021/ic00236a007
10.1002/cber.19871200615
10.1039/b805309j
10.1021/om100395r
10.1039/b913946j
10.1002/(SICI)1099-1581(199809)9:9<559::AID-PAT818>3.0.CO;2-1
10.1016/S1381-1169(99)00013-8
10.1021/ic101187v
10.1002/ange.201000629
10.1002/anie.201000629
10.1021/ic060984e
- Homoconjugation a phenomenon in which the conjugate base is stabilized by hydrogen bond to the acid further complicates the determination of the overpotential.
10.1016/S0022-0728(80)80508-0
10.1016/S0022-0728(02)01257-3
10.1016/j.jelechem.2004.05.017
10.1016/S0022-0728(03)00379-6
10.1002/jcc.20200
10.1002/jcc.20201
10.1002/jcc.20256
- Linearity is generally lost for higher concentrations of acid for which diffusion of the substrate is no longer limiting.
10.1126/science.1179773
10.1002/ange.201005427
10.1002/anie.201005427
10.1021/ja00735a040
10.1021/ja9039345
10.1021/om00054a058
10.1021/ja028446y
10.1002/ejic.200901176
10.1021/ja00417a015
10.1021/ic011109q
10.1021/ic00156a017
- The process is only observed at very negative potentials and is rapidly followed by reduction to the Co0state in an irreversible two‐electron process.
10.1021/ja00469a022
{'key': 'e_1_2_8_96_2', 'volume-title': 'Acid‐Base Dissociation Constants in Dipolar Aprotic Solvents', 'author': 'Izutsu K.', 'year': '1990'}
/ Acid‐Base Dissociation Constants in Dipolar Aprotic Solvents by Izutsu K. (1990)- The calculation for the heterolytic pathway can only be carried out if the cycle involves two consecutive protonation reactions that are combined to form the so‐called H2evolution step.
10.1021/ja954326x
- Weak acids such as Et3NH+in CH3CN that are unable to protonate CoI can protonate “Co0”; H2evolution can then be catalyzed by the formation of a CoIIhydride species.
10.1002/ange.200702953
10.1002/anie.200702953
10.1021/ja109351h
- In that case there is a large excess of CoIrelative to protons.
10.1021/ja00073a025
10.1021/ic00165a010
10.1016/j.crci.2010.01.013
10.1021/ic020610v
10.1021/ja056442y
- In that case protonation of the ligand occurs before reduction at the metal and results in rapid elimination of the ligand from the cobalt coordination sphere.
10.1021/cr050191u
10.1039/b903809d
10.1021/ja00055a032
10.1021/j100031a020
10.1021/jp9939569
10.1021/jp991423u
10.1073/pnas.79.2.701
10.1021/ic9015228
10.1021/ic900389z
10.1002/hlca.19790620449
10.1021/ja00392a022
10.1021/ic100036v
{'key': 'e_1_2_8_121_2', 'first-page': '449', 'volume': '1', 'author': 'Lehn J. M.', 'year': '1977', 'journal-title': 'New J. Chem.'}
/ New J. Chem. by Lehn J. M. (1977){'key': 'e_1_2_8_122_2', 'first-page': '547', 'volume': '2', 'author': 'Moradpour A.', 'year': '1978', 'journal-title': 'New J. Chem.'}
/ New J. Chem. by Moradpour A. (1978)10.1021/ja1088869
10.1021/ic00211a018
10.1021/ic00159a001
10.1002/hlca.19860690514
10.1021/ja00398a066
10.1002/ijch.198200020
10.1016/S0360-3199(96)00133-4
10.1021/ja00499a051
{'key': 'e_1_2_8_131_2', 'first-page': '271', 'volume': '7', 'author': 'Hawecker J.', 'year': '1983', 'journal-title': 'New J. Chem.'}
/ New J. Chem. by Hawecker J. (1983)10.1016/0360-3199(89)90029-3
10.1021/ja0427101
10.1021/ar900253e
10.1039/b812605b
10.1021/jp106512a
- P. Zhang M. Chavarot‐Kerlidou P.‐A. Jacques M. Wang L. Sun M. Fontecave V. Artero unpublished results.
10.1021/ic8013255
10.1021/ja804650g
10.1021/ic101731j
10.1021/ja903044n
10.1021/ja1057357
10.1016/j.jorganchem.2009.04.041
10.1021/ja058087h
10.1246/cl.2007.920
10.1002/ange.200600543
10.1002/anie.200600543
10.1002/ange.200906595
10.1002/anie.200906595
10.1021/ja073123t
10.1126/science.1062965
10.1039/c0cc02486d
10.1039/c0cc03154b
10.1021/jp1023636
10.1039/c0cc04658b
{'key': 'e_1_2_8_154_2', 'first-page': '157', 'volume': '16', 'author': 'Kölle U.', 'year': '1992', 'journal-title': 'New J. Chem.'}
/ New J. Chem. by Kölle U. (1992)10.1021/ja0776780
- A similar description of the excited and oxidized states holds for the other iridium and rhenium diimine photosensitizers discussed in this section.
10.1016/0010-8545(88)80032-8
- This contrasts with electrocatalytic studies in which the interfacial electron transfer at the electrode is generally not considered as the kinetic bottleneck for H2evolution.
10.1039/b926749b
10.1021/ic00209a012
10.1016/0013-4686(96)00088-6
10.1016/0013-4686(84)85004-5
{'key': 'e_1_2_8_163_2', 'volume-title': 'Electrodes of Conductive Metal Oxides', 'author': 'Tarasevich M. R.', 'year': '1980'}
/ Electrodes of Conductive Metal Oxides by Tarasevich M. R. (1980)10.1002/ange.201003110
10.1002/anie.201003110
10.1021/ja809108y
- Nickel oxide is classically the basis of active anodes used for alkaline electrolysis with a similar overpotential requirement.
10.1021/ar900225y
10.1039/c0cc01828g
10.1021/ja00378a053
10.1021/ic900538g
10.1021/ja901373m
10.1021/ja01286a049
10.1016/0022-1902(69)80026-6
{'key': 'e_1_2_8_174_2', 'first-page': '548', 'author': 'Veprek‐Siska J.', 'year': '1967', 'journal-title': 'Chem. Ind.'}
/ Chem. Ind. by Veprek‐Siska J. (1967)10.1039/tf9686400744
{'key': 'e_1_2_8_176_2', 'first-page': '81', 'volume': '4', 'author': 'Shafirovich V. Y.', 'year': '1980', 'journal-title': 'New J. Chem.'}
/ New J. Chem. by Shafirovich V. Y. (1980)10.1021/ja00987a010
{'key': 'e_1_2_8_178_2', 'first-page': '199', 'volume': '2', 'author': 'Shafirovich V. Y.', 'year': '1978', 'journal-title': 'New J. Chem.'}
/ New J. Chem. by Shafirovich V. Y. (1978)10.1021/ja00352a050
10.1126/science.1185372
10.1039/C39730000139
10.1016/S0022-0728(00)00381-8
10.1016/0013-4686(94)85162-X
10.1016/0013-4686(64)80016-5
10.1016/0013-4686(64)80017-7
- O.Suzuki M.Takahashi T.Fukunaga J.Kuboyama US Patent 3 399 966 1968.
10.1149/1.2115870
10.1149/1.2069451
10.1149/1.2069396
10.1149/1.2069201
10.1016/0021-9517(91)90325-X
10.1149/1.2086224
10.1149/1.2085465
10.1149/1.2086225
10.1149/1.2086226
10.1149/1.2085762
10.1016/S0025-5408(01)00739-5
10.1039/b919370g
10.1016/S1452-3981(23)15532-5
10.1016/j.tsf.2006.11.056
10.1016/0013-4686(90)90030-4
10.1021/jp904022e
10.1016/j.elecom.2007.01.044
10.1039/c002074e
10.1016/j.jelechem.2009.11.024
10.1126/science.1162018
10.1021/ja807769r
10.1021/ja1023767
10.1021/ja902121f
10.1002/cctc.201000126
10.1039/c0ee00177e
10.1039/C0EE00518E
10.1021/ja106102b
10.1021/ja1013344
10.1021/ja900023k
10.1039/tf9504600820
10.1002/cssc.201000161
- The same is true for other anions such as borate and methylphosphonate.[213]
10.1039/F29817702373
10.1039/c0ee00585a
10.1039/f19888402795
10.1002/ange.200805534
10.1002/anie.200805534
10.1021/ja109681d
10.1021/ja052595
10.5796/electrochemistry.68.651
/ Electrochemistry by Nagashima K. (2000)10.1002/ange.200504454
10.1002/anie.200504454
10.1021/ja064380l
10.1021/ja9016478
10.1021/ja908730h
10.1073/pnas.0910203106
- D. G.Nocera M. W.Kanan T. A.Moore Y.Surendranath S. Y.Reece A. J.Esswein WO 042197A1 2010.
10.1038/35104607
10.1039/c0dt00454e
10.1021/ja101578m
10.1149/1.2412052
10.1038/nchem.1049
- J. Luo N. P. Rath L. M. Mirica Inorg. Chem.2011 DOI:.
Dates
Type | When |
---|---|
Created | 14 years, 1 month ago (July 11, 2011, 10:16 a.m.) |
Deposited | 1 year, 10 months ago (Oct. 16, 2023, 7:40 p.m.) |
Indexed | 4 days ago (Aug. 31, 2025, 6:37 a.m.) |
Issued | 14 years, 1 month ago (July 11, 2011) |
Published | 14 years, 1 month ago (July 11, 2011) |
Published Online | 14 years, 1 month ago (July 11, 2011) |
Published Print | 14 years, 1 month ago (Aug. 1, 2011) |
@article{Artero_2011, title={Splitting Water with Cobalt}, volume={50}, ISSN={1521-3773}, url={http://dx.doi.org/10.1002/anie.201007987}, DOI={10.1002/anie.201007987}, number={32}, journal={Angewandte Chemie International Edition}, publisher={Wiley}, author={Artero, Vincent and Chavarot‐Kerlidou, Murielle and Fontecave, Marc}, year={2011}, month=jul, pages={7238–7266} }