Crossref
journal-article
Wiley
Angewandte Chemie International Edition (311)
References
46
Referenced
124
{'key': 'e_1_2_3_1_2', 'volume-title': 'The Theory of Intermolecular Forces', 'author': 'Stone A. J.', 'year': '1997'}
/ The Theory of Intermolecular Forces by Stone A. J. (1997)10.1002/3527607439
10.1002/ange.200390290
10.1002/anie.200390319
10.1093/protein/13.11.753
10.1021/cr9800255
10.1021/jp046738a
10.1063/1.1424928
10.1002/3527600043
10.1002/prac.18671010147
10.1039/a900965e
10.1002/9783527619825
- NIST Standard Reference Database; seehttp://webbook.nist.gov/chemistry/.
10.1021/ja01126a026
10.1080/00268948108072704
10.1002/prac.19813230316
10.1080/15421407008083478
- This qualitative view is supported by the T1 diagnostics of the QCISD calculations the smallness of the (T) contribution as well as exploratory MR‐MP2 computations.
10.1063/1.1569242
10.1063/1.431514
10.1142/1170
10.1063/1.464913
10.1021/j100096a001
10.1103/PhysRevLett.77.3865
10.1002/jcc.20078
10.1016/0009-2614(94)01027-7
10.1002/jcc.540161102
- There is an additional correlation effect arising from the formal conversion of four π electrons in1into two σ bonds in2which is also not accounted for accurately by DFT.
- The experimental dissociation energy for 9 10‐dihydroanthracene→1+H2(derived from experimental heats of formation[7]and vibrational DFT‐PBE corrections) is 23±2 kcal mol−1. At MP2/cc‐pVTZ SCS‐MP2/cc‐pVTZ QCISD(T)/cc‐pVDZ PBE/cc‐pVTZ and B3LYP/cc‐pVTZ theoretical levels (MP2/TZV(2d 2p) geometry) one obtains 21.0 21.2 23.5 17.9 and 16.2 kcal mol−1 respectively.
- The lattice enthalpy of1(the difference in heats of formation in the gas phase and the solid state) is 25 kcal mol−1.[7]If we assume the same value for2we can estimate its gas‐phase heat of formation to be 98 kcal mol−1 which leads to an experimental estimate for ΔHDof about 12 kcal mol−1. The thus obtained endothermicity of the dissociation is in full agreement with our theoretical results.
- Data obtained for nonpolar solutes in a nonpolar solvents are usually taken as substitutes for the gas phase.
10.1002/cphc.200500285
10.1016/0009-2614(89)85118-8
- TURBOMOLE (Vers. 5.6): R. Ahlrichs et al Universität Karlsruhe 2003; see also:http://www.turbomole.com.
10.1063/1.467146
- http://www.turbomole.com.
10.1063/1.456153
10.1007/s002140050269
10.1063/1.1445115
10.1063/1.472584
10.1016/S0009-2614(00)00276-1
10.1063/1.1394757
10.1063/1.1846654
10.1016/S0009-2614(03)00128-3
10.1063/1.476734
10.1063/1.1364680
Dates
Type | When |
---|---|
Created | 19 years, 8 months ago (Dec. 15, 2005, 5:47 a.m.) |
Deposited | 1 year, 10 months ago (Oct. 16, 2023, 12:53 a.m.) |
Indexed | 2 days, 1 hour ago (Aug. 23, 2025, 1:01 a.m.) |
Issued | 19 years, 7 months ago (Jan. 11, 2006) |
Published | 19 years, 7 months ago (Jan. 11, 2006) |
Published Online | 19 years, 7 months ago (Jan. 11, 2006) |
Published Print | 19 years, 7 months ago (Jan. 16, 2006) |
@article{Grimme_2006, title={The Importance of Inter‐ and Intramolecular van der Waals Interactions in Organic Reactions: the Dimerization of Anthracene Revisited}, volume={45}, ISSN={1521-3773}, url={http://dx.doi.org/10.1002/anie.200502440}, DOI={10.1002/anie.200502440}, number={4}, journal={Angewandte Chemie International Edition}, publisher={Wiley}, author={Grimme, Stefan and Diedrich, Christian and Korth, Martin}, year={2006}, month=jan, pages={625–629} }