Crossref journal-article
Wiley
Angewandte Chemie International Edition (311)
Bibliography

Shintani, R., & Fu, G. C. (2003). Catalytic Enantioselective Synthesis of β‐Lactams: Intramolecular Kinugasa Reactions and Interception of an Intermediate in the Reaction Cascade. Angewandte Chemie International Edition, 42(34), 4082–4085. Portico.

Authors 2
  1. Ryo Shintani (first)
  2. Gregory C. Fu (additional)
References 56 Referenced 173
  1. For discussions of the biological activity of β‐lactams see:
  2. {'key': 'e_1_2_2_2_2', 'volume-title': 'Comprehensive Heterocyclic Chemistry II', 'year': '1996'} / Comprehensive Heterocyclic Chemistry II (1996)
  3. {'key': 'e_1_2_2_3_2', 'volume-title': 'The Chemistry of β‐Lactams', 'year': '1992'} / The Chemistry of β‐Lactams (1992)
  4. {'key': 'e_1_2_2_4_2', 'volume-title': 'Chemistry and Biology of β‐Lactam Antibiotics, Vol. 1–3', 'year': '1982'} / Chemistry and Biology of β‐Lactam Antibiotics, Vol. 1–3 (1982)
  5. For reviews on the synthetic organic chemistry of β‐lactams see:
  6. {'key': 'e_1_2_2_6_2', 'volume-title': 'Synthesis of β‐Lactam Antibiotics: Chemistry, Biocatalysis and Process Integration', 'year': '2001'} / Synthesis of β‐Lactam Antibiotics: Chemistry, Biocatalysis and Process Integration (2001)
  7. {'key': 'e_1_2_2_7_2', 'volume-title': 'Enantioselective Synthesis of β‐Amino Acids', 'year': '1997'} / Enantioselective Synthesis of β‐Amino Acids (1997)
  8. 10.1039/CS9972600377
  9. {'key': 'e_1_2_2_9_2', 'volume-title': 'The Organic Chemistry of β‐Lactams', 'year': '1993'} / The Organic Chemistry of β‐Lactams (1993)
  10. 10.1021/jm970701f
  11. 10.2165/00129784-200303010-00007
  12. http://custom.marketwatch.com/custom/excite‐com/news‐story.asp?guid={4EB90E73‐AC13–43B8–841D‐E907016B2F85}.
  13. For leading references see:
  14. 10.1039/b100070p
  15. {'key': 'e_1_2_2_16_2', 'first-page': '53', 'volume': '84', 'author': 'Kingston D. G. I.', 'year': '2002', 'journal-title': 'Prog. Chem. Org. Nat. Prod.'} / Prog. Chem. Org. Nat. Prod. by Kingston D. G. I. (2002)
  16. For leading references see:
  17. 10.1002/1521-3757(20011203)113:23<4507::AID-ANGE4507>3.0.CO;2-2
  18. 10.1002/1521-3773(20011203)40:23<4377::AID-ANIE4377>3.0.CO;2-J
  19. 10.1021/ja012427r
  20. 10.1039/c39720000466
  21. 10.1021/jo00121a018
  22. For examples of applications of the Kinugasa reaction by others see:
  23. 10.1039/p19760002382
  24. {'key': 'e_1_2_2_24_2', 'first-page': '350', 'volume': '25', 'author': 'Dutta D. K.', 'year': '1986', 'journal-title': 'Indian J. Chem. Sect. B'} / Indian J. Chem. Sect. B by Dutta D. K. (1986)
  25. 10.3987/R-1986-03-0655
  26. 10.1016/S0040-4020(98)00313-5
  27. 10.1016/S0040-4039(02)00974-7
  28. 10.1021/ja025833z
  29. For reviews of the chemistry and the biology of trinems/tribactams see:
  30. 10.1016/S0040-4020(00)00378-1
  31. {'key': 'e_1_2_2_30_2', 'first-page': '161', 'volume': '1', 'author': 'Ghiron C.', 'year': '1997', 'journal-title': 'Targets Heterocycl. Syst.'} / Targets Heterocycl. Syst. by Ghiron C. (1997)
  32. {'key': 'e_1_2_2_31_2', 'first-page': '86', 'volume': '198', 'author': 'Biondi S.', 'year': '1997', 'journal-title': 'Spec. Publ. R. Soc. Chem.'} / Spec. Publ. R. Soc. Chem. by Biondi S. (1997)
  33. {'key': 'e_1_2_2_32_2', 'first-page': '21', 'volume': '119', 'author': 'Perboni A.', 'year': '1993', 'journal-title': 'Spec. Publ. R. Soc. Chem.'} / Spec. Publ. R. Soc. Chem. by Perboni A. (1993)
  34. 10.1021/cr000456z
  35. R. K.Bakshi K. J.Barakat Y.Lai R. P.Nargund B. L.Palucki M. K.Park A. A.Patchet I.Sebhat Z.Ye WO US 25757 20010817 2001;
  36. R. K.Bakshi R. P.Nargund Z.Ye WO US 17014 20010525 2001.
  37. 10.1016/S0957-4166(97)00593-4
  38. 10.1002/0471227110.ch1
  39. Similarly in the only study by others of a catalytic asymmetric Kinugasa reaction Miura et al. found bisoxazoline4to be only modestly effective as a chiral ligand for copper‐catalyzed intermolecular couplings of alkynes with nitrones (maximumeevalue: 57 %).[7]
  40. 10.1021/ol006606
  41. 10.1021/ol026651c
  42. The data for ligands5 aand6in Table 1 (entries 3 and 5) indicate that the central chirality of the oxazoline subunit is the dominant stereocontrol element and that the planar chirality of the phosphaferrocene subunit plays a subordinate although significant role.
  43. The absolute configuration of the product was determined through X‐ray crystallographic analysis of the bis(amide) that is produced upon the reaction of β‐lactam3with excess 2‐bromobenzylamine (see Supporting Information).
  44. Notes for Table 2 entry 1: 1) When CuBr is used the product is furnished with somewhat highereevalues than with CuCl CuI Cu(OTf) Cu(MeCN)4BF4 or Cu(SCN). 2) The course of the coupling is highly dependent on the (C6H11)2NMe/Cu ratio (e.g. a 20:1 ratio leads to a substantial increase in side reactions). 3) The use of bases such as K3PO4⋅H2O K2CO3 1 4‐diazabicyclo[2.2.2]octane (dabco) 2 6‐lutidine KF NEt3 1 8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) and KOH results in an erosion in enantioselectivity and/or yield. 4) The use of MeCN as the solvent gives rise to much cleaner reactions than the use of CH2Cl2 THF dioxane N N‐dimethylformamide (DMF) acetone or 2‐methylbutan‐2‐ol. 5) Kinugasa reactions ofN‐phenyl andN‐(4‐carboethoxyphenyl)‐substituted nitrones lead to β‐lactams with similareevalues but couplings ofN‐(4‐carboethoxyphenyl)‐substituted nitrones generally proceed in somewhat better yield. In the case of anN‐benzyl‐ rather than anN‐(4‐carboethoxyphenyl)‐substituted nitrone theeevalue and the yield of the β‐lactam are lower. We have not attempted to optimize these processes. 6) Recrystallization of the β‐lactam from Et2O enhances theeevalue (>99 %ee; 53 % recovery).
  45. Ligands5 aand5 bpromote similar enantioselectivity in the synthesis of 6 4 bicyclic systems (Table 2 entries 1–4). However the yields are generally higher when5 ais employed. For the synthesis of 7 4 bicyclic systems (Table 2 entries 5 and 6) comparable yields were observed when ligands5 aor5 bwere used but somewhat bettereevalues (up to 15 % higher) were observed in the presence of ligand5 b.
  46. 10.1021/jo00100a033
  47. 10.1002/(SICI)1521-3757(19980216)110:4<402::AID-ANGE402>3.0.CO;2-6
  48. 10.1002/(SICI)1521-3773(19980302)37:4<388::AID-ANIE388>3.0.CO;2-V
  49. 10.1002/1521-3757(20011217)113:24<4725::AID-ANGE4725>3.0.CO;2-L
  50. 10.1002/1521-3773(20011217)40:24<4591::AID-ANIE4591>3.0.CO;2-V
  51. Another potential complication is the reaction of a nucleophilic Brønsted base (e.g. a tertiary amine) with the electrophile (E+).
  52. When KOAc/Ph(Me3SiO)CCH2is used instead of (C6H11)2NMe acetophenone is presumably generated rather than a trialkylammonium salt. Acetophenone is a poor proton donor compared to a trialkylammonium salt.
Dates
Type When
Created 21 years, 11 months ago (Sept. 10, 2003, 9:32 a.m.)
Deposited 1 year, 10 months ago (Oct. 10, 2023, 4:12 p.m.)
Indexed 1 week ago (Aug. 26, 2025, 2:48 a.m.)
Issued 21 years, 11 months ago (Sept. 5, 2003)
Published 21 years, 11 months ago (Sept. 5, 2003)
Published Online 21 years, 11 months ago (Sept. 5, 2003)
Published Print 21 years, 11 months ago (Sept. 5, 2003)
Funders 0

None

@article{Shintani_2003, title={Catalytic Enantioselective Synthesis of β‐Lactams: Intramolecular Kinugasa Reactions and Interception of an Intermediate in the Reaction Cascade}, volume={42}, ISSN={1521-3773}, url={http://dx.doi.org/10.1002/anie.200352103}, DOI={10.1002/anie.200352103}, number={34}, journal={Angewandte Chemie International Edition}, publisher={Wiley}, author={Shintani, Ryo and Fu, Gregory C.}, year={2003}, month=sep, pages={4082–4085} }