Crossref journal-article
Wiley
Angewandte Chemie International Edition in English (311)
Bibliography

Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W., & Schröder, M. (1997). Anion Control in Bipyridylsilver(I) Networks: A Helical Polymeric Array. Angewandte Chemie International Edition in English, 36(21), 2327–2329. Portico.

Authors 6
  1. Matthew A. Withersby (first)
  2. Alexander J. Blake (additional)
  3. Neil R. Champness (additional)
  4. Peter Hubberstey (additional)
  5. Wan‐Sheung Li (additional)
  6. Martin Schröder (additional)
References 28 Referenced 400
  1. {'key': 'e_1_2_1_1_2', 'volume-title': 'Supremolecular Architecture', 'author': 'Robson R.', 'year': '1992'} / Supremolecular Architecture by Robson R. (1992)
  2. 10.1021/ja00082a055
  3. {'key': 'e_1_2_1_2_2', 'volume-title': 'Crystal Engineering: The Design of Organic Solids', 'author': 'Desiraju G. R.', 'year': '1989'} / Crystal Engineering: The Design of Organic Solids by Desiraju G. R. (1989)
  4. 10.1002/ange.19951072105
  5. {'key': 'e_1_2_1_2_4', 'first-page': '2311', 'volume': '35', 'year': '1995', 'journal-title': 'Angew. Chem. Int. Ed. Engl.'} / Angew. Chem. Int. Ed. Engl. (1995)
  6. L. R.MacGillvary S.Subramanian M. J.Zaworotko J. Chem. Soc. Chem. Commun.1994 1325; (10.1039/c39940001325)
  7. M. J.Zaworotko Chem. Soc. Rev.1994 283. (10.1039/cs9942300283)
  8. A. J.Blake N. R.Champness S. S. M.Chung W.‐S.Li M.Schröder Chem. Commun.1997 1005 and unpublished results. (10.1039/a700866j)
  9. L.Carlucci G.Ciani D. M.Proserpio A.Sironi J. Chem. Soc. Chem. Commun.1994 2755. (10.1039/C39940002755)
  10. 10.1002/ange.19951071912
  11. 10.1002/anie.199521271
  12. 10.1002/ange.19961082312
  13. 10.1002/anie.199627791
  14. 10.1038/374792a0
  15. 10.1021/ja00132a046
  16. {'key': 'e_1_2_1_10_2', 'first-page': '1783', 'volume': '241', 'author': 'Charonnat R.', 'year': '1955', 'journal-title': 'C. R. Hebd. Seances Acad. Sci.'} / C. R. Hebd. Seances Acad. Sci. by Charonnat R. (1955)
  17. F.Robinson M.Zaworotko J. Chem. Soc. Chem. Commun.1995 2413; (10.1039/C39950002413)
  18. 10.1021/ja953438l
  19. X‐ray structure crystal analysis of [Ag(pytz)(NO3)]x: C12H8AgN7O3 red hexagonal plates crystal dimensions 0.61 × 0.31 × 0.19 mm3 hexagonal space groupP6122(no. 178) a= 8.865(4) c= 31.08(2) Å V= 2115.3(8) Å3 Z= 6 F(000) = 1200 ρcalcd= 1.913 g cm−3 μ(MoKα) = 1.44 mm−1 T= 300(2) K. Data were collected on a Stoe Stadi‐4 four‐circle diffractometer with graphite‐monochromated MoKαradiation in the ω–θ scan mode with a scan width of (1.50+0.347 tanθ)° (5.2 ≤ 2θ ≤ 50.0° −10 ≤h+10 −10 ≤k≤ +10 −36 ≤ l ≤ +36). A numerical absorption correction was applied to the data (Tmin0.772 Tmax0.842); 1251 unique reflections (Rint= 0.0371) of which 1050 hadI≤ 2σ(I) were used in all calculations. The structure was solved by direct methods [13] and refined using full‐matrix least squares onF2[14]. All non‐hydrogen atoms were refined anisotropically and hydrogen atoms were treated with a riding model (d(CH) = 1.00 Å2)Uiso= 0.03 Å2). A four‐term Chebychev weighting scheme was adopted [15]. FinalR= 0.033 wR2(all data) = 0.049 [19].
  20. {'key': 'e_1_2_1_13_2', 'first-page': '435', 'volume': '27', 'author': 'Altomare A.', 'year': '1994', 'journal-title': 'J. Appl. Crystallogr.'} / J. Appl. Crystallogr. by Altomare A. (1994)
  21. D. J.Watkin C. K.Prout R. J.Carruthers P.Betteridge CRYSTALS Issue 10 Chemical Crystallography Laboratory Oxford UK 1996.
  22. 10.1107/S0567739479001613
  23. The Ag‐O distances of 2.787(2)Å are typical for such interactions between Ag1centers and NOions [11].
  24. X‐ray crystal structure analysis of [Ag(pytz)(PF6)(MeCN)]∞: C14H11AgF6N7P red plates crystal dimensions 0.62 × 0.54 × 0.27 mm3 monoclinic space groupP21/n(no. 14) a= 9.242(3) b= 13.695(2) c= 14.010(2) Å β = 99.68(3)° V= 1747.9(8) Å3 Z= 4 F(000) = 1040 ρcalcd= 2.014 g cm−3 μ(MoKα) = 1.31 mm−1 T= 220.0(2) K. Data were collected on a Stoe Stadi‐4 four‐circle diffractometer with graphite‐monochromated MoKαradiation in the ω–θ scan mode with a scan width of (4.0+0.347 tanθ)° (5.7 ≤ 2θ ≤ 50.1° −10 ≤h≤ +11 0 ≤k≤ +16 −5 ≤ l ≤ +16). A ψ‐scan absorption correction was applied to the data (Tmin0.521 Tmax0.628); 2914 unique reflections (Rint= 0.0567) of which 2385 hadI≥ 2σ(I) were used in all calcuations. The structure was solved by direct methods [13] and refined using full‐matrix least squares onF2[14]. All non‐hydrogen atoms were refined anisotropically and hydrogen atoms were treated with a riding model (d(CH) = 1.00 Å2):Uiso= 0.06 Å2) except those on methyl groups (d(CH) = 1.00 Å2)Uiso= 0.03 Å2). A three‐term Chebychev weighting scheme was adopted [15]. FinalRvalues:R= 0.0738 wR2(all data) = 0.0414 [19].
  25. X‐ray crystal structure analysis of [Ag(pytz)(BF4)(MeCN)]∞C14H11AgBF4N7 red plates crystal dimensions 0.55 × 0.33 × 0.16 mm3 monoclinic space groupP21/n(no. 14) a= 8.754(3) b= 13.565(3) c= 14.049(5) Å β = 98.46(3)° V= 1650.1(7) Å3 Z= 4 F(000) = 928 ρcalcd= 1.813 g cm−3 μ(MoKα) = 1.254 mm−1 T= 220.0(2) K. Data were collected on a Stoe Stadi‐4 four circle diffractometer with graphite‐monochromated MoKαradiation in the ω–θ scan mode with scan width of (1.50+0.347 tanθ)° (5.2 ≤ 2θ ≤ 50.0° −10 ≤h≤ +10 −16 ≤k≤ +16 −16 ≤l≤ +16). A numerical absorption correction was applied to the data (Tmin0.653 Tmax0.799); 5494 unique reflections (Rint= 0.1252) of which 4394 hadI≥ 2σ(I) were used in all calculations. The structure was solved by direct methods [13] and refined using full‐matrix least squares onF2[14]. The structure was disordered along the direction of the Ag‐pytz‐Ag chains and all atoms with the exception of the BFanion and the MeCN molecule were affected. The relative occupancies were 0.8 and 0.2; the geometry of the lower‐occupancy ligand was restrained to the average geometry of the higheroccupancy ligand. All higher occupancy atoms were refined anisotropically and all lower‐occupancy atoms isotropically. No hydrogen atoms were modelled on atoms of the lower occupancy ligand. Hydrogen atoms were treated with a riding model (d(C‐H) = 1.00 Å (Uiso= 0.03 Å2) A two‐term Chebychev weighting scheme was adopted [15]. FinalRvalues:R= 0.1065 wR2(all data) = 0.1095 [19].
  26. Further details of the crystal structure investigations can be obtained from the Fachinformationszentrum Karlsruhe D‐76344 Eggenstein‐Leopoldshafen Germany upon quoting the deposit numbers (CSD‐407272 ([Ag(pytz)(NO3)]∞) (CSD‐407273 ([Ag(pytz)(BF4)(MeCN)]∞) and CSD‐407274 ([Ag(pytz)(PF6)(MeCN)]∞).
  27. 10.1002/ange.19971090624
  28. 10.1002/anie.199706361
Dates
Type When
Created 21 years, 7 months ago (Dec. 31, 2003, 4:22 a.m.)
Deposited 1 year, 9 months ago (Oct. 27, 2023, 5:34 p.m.)
Indexed 1 month, 3 weeks ago (June 30, 2025, 7:26 a.m.)
Issued 27 years, 9 months ago (Nov. 14, 1997)
Published 27 years, 9 months ago (Nov. 14, 1997)
Published Online 21 years, 8 months ago (Dec. 22, 2003)
Published Print 27 years, 9 months ago (Nov. 14, 1997)
Funders 0

None

@article{Withersby_1997, title={Anion Control in Bipyridylsilver(<scp>I</scp>) Networks: A Helical Polymeric Array}, volume={36}, ISSN={0570-0833}, url={http://dx.doi.org/10.1002/anie.199723271}, DOI={10.1002/anie.199723271}, number={21}, journal={Angewandte Chemie International Edition in English}, publisher={Wiley}, author={Withersby, Matthew A. and Blake, Alexander J. and Champness, Neil R. and Hubberstey, Peter and Li, Wan‐Sheung and Schröder, Martin}, year={1997}, month=nov, pages={2327–2329} }