Crossref journal-article
Wiley
Angewandte Chemie International Edition in English (311)
Abstract

AbstractA method is presented here that allows, in principle, the prediction of the existence and structure of (meta)stable solid compounds. It is based on a set of adjustable modules that are applied to the study of the energy function of the chemical system of interest. The main elements are a set of routines for global optimization and local minimization, as well as algorithms for the investigation of the phase space structure near local minima of the potential energy, and the analysis and characterization of the structure candidates. The current implementation focuses on ionic compounds, for which empirical potentials are used for the evaluation of the energy function in the first stage, and a Hartree–Fock algorithm for refinements. The global optimization is performed with a stochastic simulated annealing algorithm, and the local minimization employs stochastic quenches and gradient methods. The neighborhoods of the local minima are studied with the threshold algorithm. The results of this approach are illustrated with a number of examples: compounds of binary noble gases, and binary and ternary ionic compounds. These include several substances that have not been synthesized yet, but should stand a fair chance of being kinetically stable, for example further alkali metal nitrides besides Li3N, as well as Ca3SiBr2 or SrTi2O5.

Bibliography

Schön, J. C., & Jansen, M. (1996). First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization. Angewandte Chemie International Edition in English, 35(12), 1286–1304. Portico.

Authors 2
  1. J. Christian Schön (first)
  2. Martin Jansen (additional)
References 166 Referenced 272
  1. 10.1007/978-3-663-07241-6
  2. 10.1002/ange.19911030504
  3. 10.1002/anie.199104553
  4. 10.1351/pac196714010019
  5. 10.1002/ange.19931050207
  6. 10.1002/anie.199302011
  7. 10.1002/ange.19710830105
  8. 10.1002/anie.197100431
  9. 10.1002/adma.19920040716
  10. {'key': 'e_1_2_1_7_2', 'volume-title': 'Statistical Physics, Part 1', 'author': 'Landau L. D.', 'year': '1985'} / Statistical Physics, Part 1 by Landau L. D. (1985)
  11. {'key': 'e_1_2_1_8_2', 'volume-title': 'Aspekte von Kraftfeldrechnungen', 'author': 'Ermer O.', 'year': '1981'} / Aspekte von Kraftfeldrechnungen by Ermer O. (1981)
  12. 10.1007/978-3-642-93063-8
  13. M.Jansen Abb. Rheinisch. Westfael. Akad. Wiss.1996 N 342 in press.
  14. {'key': 'e_1_2_1_11_2', 'author': 'Goldschmidt V. M.', 'year': '1926', 'journal-title': 'Skrift. Nor. Vidensk. Akad. Kl. 1: Mat. Naturvidensk. Kl.'} / Skrift. Nor. Vidensk. Akad. Kl. 1: Mat. Naturvidensk. Kl. by Goldschmidt V. M. (1926)
  15. {'key': 'e_1_2_1_12_2', 'volume-title': 'Solid State Chemistry and Its Applications', 'author': 'West A. R.', 'year': '1984'} / Solid State Chemistry and Its Applications by West A. R. (1984)
  16. {'key': 'e_1_2_1_13_2', 'volume-title': 'The Nature of the Chemical Bond', 'author': 'Pauling L.', 'year': '1960'} / The Nature of the Chemical Bond by Pauling L. (1960)
  17. {'key': 'e_1_2_1_14_2', 'first-page': '295', 'volume': '35', 'author': 'Hume‐Rothery W.', 'year': '1926', 'journal-title': 'J. Inst. Met.'} / J. Inst. Met. by Hume‐Rothery W. (1926)
  18. {'key': 'e_1_2_1_15_2', 'volume-title': 'Anorganische Strukturchemie', 'author': 'Müller U.', 'year': '1992'} / Anorganische Strukturchemie by Müller U. (1992)
  19. 10.1107/S0567739473000689
  20. {'key': 'e_1_2_1_17_2', 'first-page': '387', 'volume': '6', 'author': 'Hoppe R.', 'year': '1970', 'journal-title': 'Adv. Fluorine Chem.'} / Adv. Fluorine Chem. by Hoppe R. (1970)
  21. Strictly speaking most of the subsequent discussion deals with those structures that can be stabilized by energy barriers alone that is phases that could in principle exist atT= 0 K. For those phases that can only exist at high temperatures (e. g. the liquid state) we refer to the discussion in Section 6.3.
  22. The design and synthesis of a new compound correspond to the theoretical and experimental exploration of this energy landscape; thus a chemist plays a role closer to that of an intrepid discoverer of strange and foreign lands and less to that of a creator of new worlds.
  23. 10.1021/j100055a032
  24. Note that the use of periodic boundary conditions does not imply anything about the final symmetry of the candidate structures.
  25. An alternative is the use of open boundary conditions that is the simulation of a cluster. To deal with surface effects this cluster should be embedded possibly in an effective medium which reflects the average interaction with the remainder of the solid .
  26. {'key': 'e_1_2_1_23_2', 'volume-title': 'Optimization Theory with Applications', 'author': 'Pierre D. A.', 'year': '1986'} / Optimization Theory with Applications by Pierre D. A. (1986)
  27. {'key': 'e_1_2_1_24_2', 'volume-title': 'Genetic Algorithms and Simulated Annealing', 'author': 'Davis L.', 'year': '1987'} / Genetic Algorithms and Simulated Annealing by Davis L. (1987)
  28. P. J. M.van Laarhoven Ph.D. Thesis De Erasmus Universiteit Rotterdam 1988.
  29. Depending on the objectives of the simulation one might want to exclude the ones with uninteresting properties. For example if one searches for insulators one would not want to spend time refining structures that exhibit metallic behavior.
  30. The term “state” refers to the electronic configuration of the atoms entering the approximate description of the solid such as ionic charge or “type” and occupation of orbitals.
  31. 10.1103/PhysRevB.33.7983
  32. A. M. Stoneham Handbook of Interatomic Potentials. I. Ionic Crystals(preprint; 1981)
  33. 10.1016/0022-3697(64)90160-X
  34. 10.1039/jm9940400781
  35. 10.1016/0956-7151(92)90260-L
  36. 10.1103/PhysRevB.46.3798
  37. 10.1007/978-3-642-93385-1
  38. 10.1103/PhysRevLett.55.2471
  39. 10.1002/bbpc.19940981207
  40. 10.1002/bbpc.199500047
  41. H.Putz Diplom Thesis Universität Bonn 1994.
  42. 10.1016/0927-0256(95)00016-J
  43. J. C.Schön M.Jansen unpublished results.
  44. M.Wevers J. C.Schön M.Jansen unpublished results.
  45. M.Wevers Diplom Thesis Universität Bonn 1995.
  46. J. C.Schön M.Jansen unpublished results.
  47. H.Putz J. C.Schön M.Jansen unpublished results.
  48. 10.1002/jcc.540140909
  49. 10.1098/rspa.1980.0135
  50. 10.1021/j100303a006
  51. 10.1016/0378-4371(93)90438-A
  52. C. Oligschleger Aachen personal communication 1995.
  53. 10.1039/jm9940400831
  54. 10.1007/978-94-015-7744-1
  55. 10.1126/science.220.4598.671
  56. 10.1007/BF00940812
  57. 10.1063/1.1699114
  58. From this we can conclude that in certain circumstances we may interpretTas an actual temperature.
  59. 10.1109/TPAMI.1984.4767596
  60. 10.1051/jphys:019880049090148500
  61. L.Goldstein Mean Square Rates of Convergence in the Continuous Time Simulated Annealing Algorithm on Rd(preprint 1985).
  62. 10.1287/moor.13.2.311
  63. J.Lam J.‐M.Delosme An Adaptive Annealing Schedule(preprint 1987).
  64. J. M.Pedersen K.Mosegaard M. O.Jakobsen.Optimized Optimization (preprint 1989).
  65. J. M.Pedersen K.Mosegaard M. O.Jakobsen P.Salamon (preprint 1990).
  66. 10.1051/jp1:1991146
  67. 10.1016/0010-4655(88)90003-3
  68. J. C.Schönet al. unpublished results.
  69. {'key': 'e_1_2_1_66_2', 'volume-title': 'Tagungsband der Arbeitstagung des Arbeitskreises Nichtkristalline und Partiellkristalline Stukturen der DKG', 'author': 'Hannemann A.', 'year': '1995'} / Tagungsband der Arbeitstagung des Arbeitskreises Nichtkristalline und Partiellkristalline Stukturen der DKG by Hannemann A. (1995)
  70. 10.1524/zkri.1985.170.1-4.241
  71. 10.1107/S0108767388006427
  72. 10.1107/S0021889887086710
  73. 10.1088/0953-8984/8/2/004
  74. 10.1209/0295-5075/22/7/001
  75. 10.1016/0378-4371(94)90115-5
  76. 10.1103/PhysRevB.49.6667
  77. For several optimization runs the composition was allowed to vary freely too. In these cases the candidate structures were dominated by a close packing of the heavier atoms while the lighter noble gases tended to be removed from the simulation cell indicating that phase separation was a very important option for all of these systems.
  78. 10.1038/176747a0
  79. 10.1002/ange.19951070223
  80. 10.1002/anie.199502331
  81. {'key': 'e_1_2_1_77_2', 'volume-title': 'Experimental Techniques in High‐Pressure Research', 'author': 'Sherman W. F.', 'year': '1987'} / Experimental Techniques in High‐Pressure Research by Sherman W. F. (1987)
  82. Note that our energy of formation with respect to the binary compounds is calculated atT= 0 K andp= 0 Pa while the experimental value is valid at standard conditions. Since the resulting difference in enthalpy is basically given by the integral over the specïfic heat and the contribution from the binary compounds will to a large degree cancel the contribution from the ternary compound the rough comparison we perform appears to be reasonable.
  83. {'key': 'e_1_2_1_79_2', 'volume-title': 'Thermochemical Data of Pure Substances', 'author': 'Barin I.', 'year': '1989'} / Thermochemical Data of Pure Substances by Barin I. (1989)
  84. 10.1002/zaac.19693710504
  85. 10.1103/PhysRevB.42.6416
  86. {'key': 'e_1_2_1_82_2', 'first-page': '239', 'volume': '33', 'author': 'Lukaszewicz K.', 'year': '1959', 'journal-title': 'Rocz. Chem.'} / Rocz. Chem. by Lukaszewicz K. (1959)
  87. {'key': 'e_1_2_1_83_2', 'first-page': '821', 'volume-title': 'Materials Research Society Fall Meeting', 'author': 'Baldus H.‐P.', 'year': '1992'} / Materials Research Society Fall Meeting by Baldus H.‐P. (1992)
  88. {'key': 'e_1_2_1_84_2', 'volume-title': 'Quantum Theory of the Solid State', 'author': 'Callaway J.', 'year': '1974'} / Quantum Theory of the Solid State by Callaway J. (1974)
  89. {'key': 'e_1_2_1_85_2', 'volume-title': 'Solid State Physics', 'author': 'Ashcroft N. W.', 'year': '1976'} / Solid State Physics by Ashcroft N. W. (1976)
  90. 10.1021/ja00343a001
  91. 10.1021/cr00005a015
  92. It is curious to note that the energy differences of the local minima in Ca3SiBr2computed by using the effective potential were actually quite similar to those computed with the Hartree–Fock method (c.f. Section 5.2). This coincidence should not be over‐interpreted of course nevertheless their agreement shows that one might expect the optimizations using the simple effective potential to yield at least reasonable qualitative results.
  93. 10.1107/S0108768192003690
  94. {'key': 'e_1_2_1_90_2', 'first-page': '107', 'volume-title': 'Structural Inorganic Chemistry', 'author': 'Wells A. F.', 'year': '1975'} / Structural Inorganic Chemistry by Wells A. F. (1975)
  95. 10.1002/zaac.19865350406
  96. For example for the quaternary system Sr2NiO2Cl2 the best configuration we have found so far shows an A‐B‐A‐layer structure reminiscent of the K2NiF4structure in which each layer is based on a square O2−lattice with Ni2+filling every other square. Above and below each Ni2+ion a Cl−ion is placed resulting in an elongated octahedron around Ni. The Sr2+ions lie above and below those O2−squares that do not contain a Ni2+ion. Finally the Cl−ions “coat” the Sr‐Ni‐O layer leading to the NiO4Cl2octahedra and a O4Cl4coordination of Sr.
  97. One other observation of note is the fact that for the systems with many atoms in the simulation cell the sub‐optimal solutions tend to exhibit point defects (cf. Section 5.1). It is possible to “remove” the defects by performing considerably longer optimization runs. However the effective use of the computer resources becomes quickly an issue especially if the optimal candidate structures can already easily be perceived from the sub‐optimal structures containing these defects.
  98. Such an instance might be systems that show tendencies to form solid solutions of nearly equal size atoms.
  99. Note thatR(sometimes called an order parameter) is usually not a thermodynamic variable likeT p orV. Its definition is arbitrary and only represents one possible (but very useful if chosen cleverly) way to partition the configuration space.
  100. 10.1088/0031-8949/1982/T1/001
  101. {'key': 'e_1_2_1_97_2', 'first-page': '1', 'volume-title': 'Solid State Physics Vol 16', 'author': 'Tosi M. P.', 'year': '1964'} / Solid State Physics Vol 16 by Tosi M. P. (1964)
  102. 10.1098/rspa.1925.0047
  103. 10.1063/1.1743957
  104. 10.1016/0038-1098(91)90629-A
  105. {'key': 'e_1_2_1_101_2', 'volume-title': 'Modern Techniques in Computational chemistry: MOTECC‐90', 'author': 'Clementi E.', 'year': '1992'} / Modern Techniques in Computational chemistry: MOTECC‐90 by Clementi E. (1992)
  106. 10.1002/bbpc.19940980106
  107. 10.1021/cr00005a016
  108. {'key': 'e_1_2_1_104_2', 'first-page': '159', 'volume-title': 'The Chemical Physics of Atomic and Molecular Clusters', 'author': 'Andreoni W.', 'year': '1990'} / The Chemical Physics of Atomic and Molecular Clusters by Andreoni W. (1990)
  109. 10.1007/BF01426929
  110. 10.1080/00107519008213781
  111. 10.1103/PhysRevB.34.3910
  112. 10.1007/BF01543946
  113. 10.1007/BF01384801
  114. 10.1021/cr00073a005
  115. 10.1063/1.1680883
  116. 10.1063/1.435392
  117. 10.1103/PhysRevLett.62.140
  118. 10.1063/1.461529
  119. 10.1002/9780470142592.ch2
  120. 10.1063/1.462408
  121. 10.1103/PhysRevA.44.4442
  122. 10.1063/1.463486
  123. 10.1063/1.462983
  124. 10.1063/1.464097
  125. 10.1063/1.462305
  126. 10.1063/1.462583
  127. 10.1063/1.462582
  128. 10.1063/1.457316
  129. 10.1080/00268979300100141
  130. 10.1002/ijch.199000005
  131. {'key': 'e_1_2_1_127_2', 'first-page': '3', 'volume-title': 'The Chemical Physics of Atomic and Molecular Clusters', 'author': 'Berry R. S.', 'year': '1990'} / The Chemical Physics of Atomic and Molecular Clusters by Berry R. S. (1990)
  132. 10.1021/cr00023a003
  133. 10.1063/1.436039
  134. 10.1103/PhysRev.112.90
  135. 10.1063/1.460534
  136. 10.1021/j100079a005
  137. 10.1103/PhysRevLett.71.3987
  138. 10.1103/PhysRevE.49.1895
  139. 10.1021/cr00031a008
  140. 10.1021/cr00005a007
  141. 10.1021/cr00023a006
  142. 10.1063/1.454172
  143. 10.1135/cccc19751112
  144. 10.1080/00018738200101438
  145. 10.1080/01442358709353406
  146. 10.1002/qua.560480818
  147. 10.1002/ange.19941061121
  148. 10.1002/anie.199411891
  149. 10.1021/cr00023a011
  150. C.Oligschleger PhD Thesis RWTH Aachen 1994.
  151. C. M.Freeman C. R. A.Catlow J. Chem. Soc. Chem. Commun.1992 89–91. (10.1039/c39920000089)
  152. 10.1039/jm9930300531
  153. 10.1038/346343a0
  154. 10.1002/ange.19921041127
  155. 10.1002/anie.199214721
  156. {'key': 'e_1_2_1_150_2', 'first-page': '966', 'volume': '30', 'author': 'Belashenko D. K.', 'year': '1994', 'journal-title': 'Inorg. Mater. (Engl. Trans.)'} / Inorg. Mater. (Engl. Trans.) by Belashenko D. K. (1994)
  157. Since these penalty terms do not correspond to a physical energy term but only reflect some intuitive chemical or physical knowledge about the system they have to be treated very carefully when being assigned a quantitative meaning compared to terms from an effective potential.
  158. 10.1021/ja00044a035
  159. 10.1038/342260a0
  160. 10.1039/jm9950501269
  161. 10.1107/S0108768191007255
  162. 10.1016/0022-4596(91)90375-R
  163. 10.1016/0022-4596(91)90374-Q
  164. {'key': 'e_1_2_1_158_2', 'first-page': '503', 'volume': '185', 'author': 'Brown I. D.', 'year': '1988', 'journal-title': 'Z. Kristallogr.'} / Z. Kristallogr. by Brown I. D. (1988)
  165. 10.1107/S0108768192002453
  166. 10.1002/zaac.19956210215
Dates
Type When
Created 21 years, 7 months ago (Jan. 16, 2004, 9:24 a.m.)
Deposited 1 year, 10 months ago (Sept. 28, 2023, 6:46 a.m.)
Indexed 6 hours ago (Aug. 21, 2025, 12:53 p.m.)
Issued 29 years, 1 month ago (July 9, 1996)
Published 29 years, 1 month ago (July 9, 1996)
Published Online 21 years, 7 months ago (Dec. 22, 2003)
Published Print 29 years, 1 month ago (July 9, 1996)
Funders 0

None

@article{Sch_n_1996, title={First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization}, volume={35}, ISSN={0570-0833}, url={http://dx.doi.org/10.1002/anie.199612861}, DOI={10.1002/anie.199612861}, number={12}, journal={Angewandte Chemie International Edition in English}, publisher={Wiley}, author={Schön, J. Christian and Jansen, Martin}, year={1996}, month=jul, pages={1286–1304} }