Abstract
AbstractElectron‐transfer processes in solution are among the most important reactions in chemistry and biology. The huge number of redox reactions of transition metal ions and complexes, many preparatively important oxidations and reductions of organic compounds, photosynthesis, and metabolism are only a few examples where electron‐transfer reactions play a pivotal role. This ubiquity, as well as their relative simplicity, makes them excellent models for the study on a molecular level of chemical reactions in solution. A particularly important question in chemical reaction dynamics in solution is the influence of the solvent on the reaction rate. In this context one distinguishes between static and dynamic solvent effects. Static effects refer to the stabilization of reactants, transition state, and products, that is, how the solvent affects the free energies of these species and the energy of activation. This interpretation of solvent effects on all kinds of chemical reactions is well established. A more recent development is the investigation of the influence of solvent dynamics on the rate of a reaction. The transfer of an electron is usually thought to be triggered by a fluctuation of the dielectric polarization in the surrounding solvent. The dynamics of such fluctuations is determined by the finite response time of the orientational polarization of the solvent. Under certain conditions this dielectric response time can become the rate‐determining factor of the reaction. In this article I intend to give a review of these modern developments in the theory and experimental study of electron‐transfer processes. We shall see that solvent dynamics may lead to a whole plethora of phenomena in reaction dynamics. The concepts needed for their description are not limited to electron transfer but bear relevance to many other chemical reactions in solution.
References
230
Referenced
275
10.1007/978-3-642-93116-1
{'key': 'e_1_2_1_2_2', 'volume-title': 'Electron Transfer Reactions', 'author': 'Cannon R. D.', 'year': '1980'}
/ Electron Transfer Reactions by Cannon R. D. (1980){'key': 'e_1_2_1_3_2', 'volume-title': 'Supramolecular Photochemistry', 'author': 'Balzani V.', 'year': '1991'}
/ Supramolecular Photochemistry by Balzani V. (1991)10.1002/ange.19840960504
10.1002/anie.198403293
10.1146/annurev.pc.35.100184.002253
10.1016/0304-4173(85)90014-X
10.1021/cr00077a007
10.1002/9780470166314.ch6
10.1002/9780470166314.ch8
10.1002/9780470166314.ch9
10.1007/3-540-52379-0_2
10.1007/3-540-52568-8_3
{'key': 'e_1_2_1_11_2', 'volume-title': 'Photoinduced Electron Transfer. Part A‐D', 'author': 'Fox M. A.', 'year': '1988'}
/ Photoinduced Electron Transfer. Part A‐D by Fox M. A. (1988)- J. S.Connolly J. R.Boltonin [11] Part D p. 303.
10.1021/ja00290a066
10.1021/ja00002a076
10.1021/j100407a039
10.1021/j100158a031
10.1016/0009-2614(90)85369-N
10.1021/j100158a014
10.1021/j100168a027
10.1021/ja00339a009
10.1126/science.3016897
10.1002/9780470166390.ch5
10.1002/9780470166338.ch5
10.1021/ja00170a039
10.1021/j100370a005
10.1038/320615a0
10.1021/ja00245a014
10.1038/327508a0
10.1016/0009-2614(87)87135-X
10.1021/ja00192a044
- M. R.Wasielewskiin [11] Part A p. 161.
10.1021/cr00005a007
10.1021/ja00482a013
10.1021/ja00524a011
10.1524/zpch.1982.133.1.093
10.1002/bbpc.19840880403
10.1021/ja00307a052
10.1039/f19898501027
10.1021/j100350a030
10.1016/0301-0104(90)89109-4
10.1016/0009-2614(90)85679-7
{'key': 'e_1_2_1_32_2', 'first-page': '1', 'volume': '17', 'author': 'Burgess J.', 'year': '1992', 'journal-title': 'Prog. React. Kinet.'}
/ Prog. React. Kinet. by Burgess J. (1992){'key': 'e_1_2_1_33_2', 'volume-title': 'Inorganic Chemistry', 'author': 'Purcell K. F.', 'year': '1977'}
/ Inorganic Chemistry by Purcell K. F. (1977){'key': 'e_1_2_1_33_3', 'volume-title': 'Advanced Inorganic Chemistry', 'author': 'Cotton F. A.', 'year': '1988'}
/ Advanced Inorganic Chemistry by Cotton F. A. (1988)10.1016/S0031-8914(40)90098-2
10.1016/0301-0104(80)85267-0
10.1016/0301-0104(88)80005-3
10.1016/0301-0104(90)80067-8
10.1021/j100241a008
10.1063/1.449017
10.1063/1.451952
10.1021/j100334a007
10.1063/1.453184
10.1063/1.453434
10.1016/0009-2614(87)87092-6
10.1063/1.454632
10.1063/1.450804
10.1063/1.451951
10.1016/0009-2614(88)87083-0
10.1002/ijch.199000008
10.1039/dc9827400073
10.1063/1.453804
10.1021/j100407a044
10.1016/0301-0104(82)85203-8
10.1063/1.453922
10.1021/j100328a010
10.1063/1.454570
10.1063/1.455347
10.1063/1.456427
10.1063/1.457514
10.1021/j100209a016
10.1063/1.449981
10.1039/dc9827400161
10.1016/0009-2614(83)80726-X
10.1016/0009-2614(88)87082-9
10.1016/0009-2614(88)80056-3
10.1016/0301-0104(90)80105-7
10.1021/j100334a060
10.1016/0301-0104(90)80131-G
10.1021/j100178a039
10.1063/1.460774
10.1126/science.256.5059.975
10.1063/1.462384
10.1016/0009-2614(85)80944-1
10.1021/j100259a018
10.1021/j100282a029
10.1021/ja00197a004
10.1021/j100323a026
10.1016/0009-2614(88)85132-7
10.1021/j100368a001
10.1016/0009-2614(84)80546-1
10.1002/bbpc.199000029
10.1002/bbpc.19910950811
10.1016/0009-2614(87)80374-3
10.1016/0301-0104(89)80251-4
10.1016/0009-2614(92)85043-A
{'key': 'e_1_2_1_76_2', 'first-page': '107', 'volume': '170', 'author': 'Rempel U.', 'year': '1991', 'journal-title': 'Z. Phys. Chem.'}
/ Z. Phys. Chem. by Rempel U. (1991)10.1016/0009-2614(91)85142-J
10.1126/science.243.4899.1674
10.1021/ar00147a006
10.1021/ar00177a005
10.1002/9780470133453.ch1
10.1146/annurev.pc.40.100189.000555
10.1126/science.4012322
10.1063/1.451942
- D. F.Calef in [11] Part A p. 362.
- In fact two different ways to partition the full Hamiltonian into zerothorder and perturbation parts for reactants and products each are presumed to exist [1 5 26].
10.1021/j100363a009
10.1063/1.459255
10.1021/ja00237a013
10.1126/science.2675313
10.1063/1.458785
10.1146/annurev.pc.42.100191.001431
10.1063/1.454929
10.1021/j100354a001
10.1021/j100343a002
10.1063/1.460431
- A difficult question is whether the equilibrium averaging in equation (3) of the solvent configuration (X) remains meaningful even in a dynamic process far from equilibrium. Eventually nonequilibrium dynamics has to be treated explicitly on higher dimensional (free) energy surfaces for example along the lines of Section 4.
- A harmonic free energy surfaceF(q) corresponds to a Gaussian probability distributionP(q) in equation (3). Its force constantfsis determined by the width of the Gaussianfs=kBT/<(q‐ <q>)2>; the effective massMis defined through the equipartition theoremM=kBT/〈(∂q/∂t‐ 〈∂q/∂t〉)2〉 where the brackets 〈〉 indicate equilibrium averages [95].
{'key': 'e_1_2_1_98_2', 'first-page': '988', 'volume': '24', 'author': 'Marcus R. A.', 'year': '1956', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. by Marcus R. A. (1956)10.1063/1.1696792
10.1039/tf9615700557
{'key': 'e_1_2_1_100_2', 'volume-title': 'Basic Chemical Kinetics', 'author': 'Eyring H.', 'year': '1980'}
/ Basic Chemical Kinetics by Eyring H. (1980)10.1021/j100238a003
10.1103/RevModPhys.62.251
10.1016/0301-0104(91)80038-J
- There are other conventions for γ1zdiffering from equation (7) by factors of 2 π/2 √π/2 etc.
- The justification of the factor of π requires an explicit quantum‐mechanical calculation of the transition probability for a single crossing of the LZ region [100 106]. The factor of 2 accounts for the fact that in a nonadiabatic reaction the system usually crosses the LZ region twice: once on the way up the reactant PES and unless a transition has occurred during the first crossing once on the return trip each contributing πγ1zto the overall transition probability P for a successful reaction.
{'key': 'e_1_2_1_106_2', 'first-page': '88', 'volume': '1', 'author': 'Landau L.', 'year': '1932', 'journal-title': 'Phys. Z. Sovietunion'}
/ Phys. Z. Sovietunion by Landau L. (1932){'key': 'e_1_2_1_106_3', 'first-page': '46', 'volume': '2', 'year': '1932', 'journal-title': 'Phys. Z. Sovietunion'}
/ Phys. Z. Sovietunion (1932)10.1098/rspa.1932.0165
10.1098/rspa.1933.0095
{'key': 'e_1_2_1_107_2', 'first-page': '249', 'volume': '4', 'author': 'Levich V. O.', 'year': '1966', 'journal-title': 'Adv. Electrochem. Electrochem. Eng.'}
/ Adv. Electrochem. Electrochem. Eng. by Levich V. O. (1966){'key': 'e_1_2_1_107_3', 'first-page': '1189', 'volume': '3', 'author': 'Dogonadze R. R.', 'year': '1967', 'journal-title': 'Sov. Electrochem. (Engl. Transl.)'}
/ Sov. Electrochem. (Engl. Transl.) by Dogonadze R. R. (1967)10.1016/0301-0104(74)80017-0
10.1021/j100614a017
10.1063/1.431152
10.1063/1.432142
10.1063/1.447418
- The Landau‐Zener probabilityplzis the transition probability upon a single crossing of the LZ region for arbitrary γlz. The derivation of the geometric series is a generalization of the argument in [105]: After an unsuccessful crossing of the LZ region on the way up the reactant PES the system may be trapped above the crossing point by repeated hopping between the diabatic PESs on the way down. The overall transition probability is the sum over all transition probabilities for an arbitrary numbernof hops:P=plz+ (1‐plz)plz(1‐plz) + …︁ + (1‐plz)p(1‐plz) + …︁ = 2plz/(1 + plz). See for example [1]
10.1016/0003-4916(59)90003-X
- Yet the LZ transition probability is only valid between one‐dimensional PESs. Its application to FESs must be seen in the spirit of the remark in [109].
10.1103/RevModPhys.15.1
10.1007/978-3-662-02377-8
{'key': 'e_1_2_1_112_2', 'first-page': '171', 'volume-title': 'Theory of Chemical Reaction Dynamics', 'author': 'Hynes J. T.', 'year': '1985'}
/ Theory of Chemical Reaction Dynamics by Hynes J. T. (1985)10.1002/9780470142639.ch2
10.1002/9780470142776.ch2
{'key': 'e_1_2_1_114_2', 'volume-title': 'Polar Molecules', 'author': 'Debye P.', 'year': '1929'}
/ Polar Molecules by Debye P. (1929){'key': 'e_1_2_1_114_3', 'volume-title': 'Theory of Dielectrics', 'author': 'Fröhlich H.', 'year': '1949'}
/ Theory of Dielectrics by Fröhlich H. (1949){'key': 'e_1_2_1_115_2', 'volume-title': 'Theory of Electric Polarization', 'author': 'Böttcher C. F.', 'year': '1978'}
/ Theory of Electric Polarization by Böttcher C. F. (1978)10.1039/f29837901465
10.1021/j100356a029
10.1021/ja00224a011
10.1063/1.455719
10.1002/9780470142868.ch9
- J. Stat. Phys. 1986 42 1/2
- Ber. Bunsenges. Phys. Chem. 1991 95 3
10.1021/j100324a007
- This back scattering is classical and unrelated to quantum‐mechanical resonance and coherence phenomena in barrier‐crossing problems. Although such effects have been discussed in connection with friction [40] they should be limited to very special cases unlikely to be encountered in systems of interest here.
10.1016/0009-2614(74)80325-8
10.1021/j100158a011
10.1063/1.459596
10.1063/1.440485
10.1063/1.449172
10.1063/1.450425
10.1063/1.456837
10.1063/1.449892
10.1063/1.456117
10.1016/0009-2614(89)87013-7
10.1063/1.456957
10.1021/j100364a004
10.1007/978-94-009-0489-7_22
10.1063/1.444643
10.1080/00268978800101641
10.1080/00268979000101911
10.1063/1.444472
10.1063/1.452632
10.1063/1.453920
10.1063/1.454811
10.1063/1.454901
10.1063/1.456727
10.1016/0301-0104(91)80044-I
10.1016/0009-2614(83)87496-X
10.1063/1.459786
10.1063/1.461742
10.1063/1.462746
10.1063/1.455649
10.1063/1.459932
10.1021/j100170a010
{'key': 'e_1_2_1_141_2', 'first-page': '751', 'volume': '63', 'author': 'Vij J. K.', 'year': '1985', 'journal-title': 'Adv. Chem. Phys.'}
/ Adv. Chem. Phys. by Vij J. K. (1985)10.1021/j100888a033
10.1063/1.1747496
10.1063/1.1748105
10.1016/0301-0104(91)80034-F
10.1063/1.454020
10.1063/1.456520
10.1063/1.452249
10.1063/1.452460
10.1021/j100295a008
10.1016/0301-0104(91)80041-F
10.1016/0009-2614(83)87503-4
10.1016/0009-2614(87)87100-2
10.1016/0009-2614(88)85039-5
10.1016/0009-2614(90)80020-E
10.1021/j100266a008
10.1021/j100330a026
10.1021/j100374a037
10.1063/1.455436
10.1063/1.457651
10.1002/9780470142967.ch1
10.1016/0009-2614(92)90021-E
10.1016/0009-2614(89)87364-6
10.1021/j100372a055
10.1016/0301-0104(89)80225-3
10.1021/ja00241a007
{'key': 'e_1_2_1_158_3', 'first-page': '223', 'volume-title': 'The Chemical Physics of Solvation, Part B', 'author': 'Itskovich E. M.', 'year': '1986'}
/ The Chemical Physics of Solvation, Part B by Itskovich E. M. (1986)10.1002/9780470166093.ch7
10.1002/9780470166314.ch1
10.1021/ja00251a001
10.1021/j100407a046
-
L. A.Worl R.Duesing P.Chen L. DellaCiana T. J.Meyer J. Chem. Soc. Dalton Trans.1991 849;
(
10.1039/dt9910000849
) 10.1021/j100154a013
10.1021/ja00185a062
10.1146/annurev.pc.38.100187.001115
10.1021/cr00003a007
10.1063/1.459437
10.1063/1.455864
Dates
Type | When |
---|---|
Created | 21 years, 7 months ago (Dec. 30, 2003, 5:01 p.m.) |
Deposited | 1 year, 9 months ago (Oct. 24, 2023, 7:46 p.m.) |
Indexed | 2 days, 3 hours ago (Aug. 20, 2025, 9 a.m.) |
Issued | 32 years, 5 months ago (March 1, 1993) |
Published | 32 years, 5 months ago (March 1, 1993) |
Published Online | 21 years, 8 months ago (Dec. 22, 2003) |
Published Print | 32 years, 5 months ago (March 1, 1993) |
@article{Heitele_1993, title={Dynamic Solvent Effects on Electron‐Transfer Reactions}, volume={32}, ISSN={0570-0833}, url={http://dx.doi.org/10.1002/anie.199303591}, DOI={10.1002/anie.199303591}, number={3}, journal={Angewandte Chemie International Edition in English}, publisher={Wiley}, author={Heitele, Hans}, year={1993}, month=mar, pages={359–377} }