Crossref
journal-article
Wiley
AIChE Journal (311)
References
141
Referenced
516
- MarkoffJ. Scientists worry machines may outsmart man. The New York Times 2009.
{'key': 'e_1_2_8_3_1', 'volume-title': 'Artificial Intelligence: A Modern Approach', 'author': 'Russell S', 'year': '2009'}
/ Artificial Intelligence: A Modern Approach by Russell S (2009)- HawkingS RusselS TegmarkM WilczekF.Transcendence looks at the implications of artificial intelligence ‐ but are we taking AI seriously enough?. The Independent 2014.
{'key': 'e_1_2_8_5_1', 'volume-title': 'Superintelligence: Paths, Dangers, Strategies', 'author': 'Bostrum N.', 'year': '2014'}
/ Superintelligence: Paths, Dangers, Strategies by Bostrum N. (2014)- GardelsN.The great artificial intelligence duopoly The Washington Post 2018.
- ChuiM.ManyikaJ MiremadiM HenkeN ChungR NelP MalhotraS ChuiM. Notes from the AI frontier: insights from hundreds of use cases. McKinsey Global Institute Discussion Paper. Available atwww.mckinsey.com/mgi. Accessed on December 5 2018 2018.
- PanettaK.5 trends emerge in the Gartner hype cycle for emerging technologies 2018.
10.1016/j.compchemeng.2017.10.008
10.1002/aic.16198
10.1038/s41929-018-0056-y
10.1021/acscatal.8b01708
{'key': 'e_1_2_8_13_1', 'volume-title': 'Artificial Intelligence', 'author': 'Rich E', 'year': '1983'}
/ Artificial Intelligence by Rich E (1983)10.1038/nature16961
- SilverD.HubertT SchrittwieserJ AntonoglouI LaiM GuezA LanctotM SifreL KumaranD GraepelT LillicrapT SimonyanK HassabisD.Mastering chess and shogi by self‐play with a general reinforcement learning algorithm 2017; arXiv:1712.01815v1.
{'key': 'e_1_2_8_16_1', 'first-page': '25', 'article-title': 'Knowledge‐based expert systems: an emerging technology for CAD in chemical engineering', 'volume': '81', 'author': 'Bañares‐Alcántara R', 'year': '1985', 'journal-title': 'Chem Eng Prog'}
/ Chem Eng Prog / Knowledge‐based expert systems: an emerging technology for CAD in chemical engineering by Bañares‐Alcántara R (1985)10.1016/0098-1354(85)85003-1
10.1016/0098-1354(87)85008-1
{'key': 'e_1_2_8_19_1', 'article-title': 'Expert systems: a technology before its time', 'author': 'Barr A', 'year': '1995', 'journal-title': 'AI Expert'}
/ AI Expert / Expert systems: a technology before its time by Barr A (1995)10.2307/249711
- HaskinD.Years after hype ‘expert systems’ paying off for some Datamation 2003.
{'key': 'e_1_2_8_22_1', 'volume-title': 'Process Synthesis', 'author': 'Rudd DF', 'year': '1973'}
/ Process Synthesis by Rudd DF (1973)10.1021/i160039a003
{'key': 'e_1_2_8_24_1', 'volume-title': 'Building Expert System', 'author': 'Hayes‐Roth F', 'year': '1983'}
/ Building Expert System by Hayes‐Roth F (1983){'key': 'e_1_2_8_25_1', 'volume-title': 'A Guide to Expert Systems', 'author': 'Waterman DA', 'year': '1986'}
/ A Guide to Expert Systems by Waterman DA (1986){'key': 'e_1_2_8_26_1', 'volume-title': 'The Sciences of the Artificial', 'author': 'Simon HA', 'year': '1968'}
/ The Sciences of the Artificial by Simon HA (1968)10.1037/h0030806
10.1146/annurev.ps.30.020179.002051
{'key': 'e_1_2_8_29_1', 'volume-title': 'Computer‐Based Medical Consultations, MYCIN', 'author': 'Shortliffe EH', 'year': '1976'}
/ Computer‐Based Medical Consultations, MYCIN by Shortliffe EH (1976)10.1007/BF02461988
10.1016/0004-3702(82)90021-2
10.1016/0098-1354(87)87010-2
10.1016/0098-1354(90)87040-V
{'key': 'e_1_2_8_34_1', 'first-page': '81', 'article-title': 'An expert system for diagnosis of a sequential, PLC‐controlled operation', 'author': 'Myers DR', 'year': '1990', 'journal-title': 'Artif Intell Process Eng'}
/ Artif Intell Process Eng / An expert system for diagnosis of a sequential, PLC‐controlled operation by Myers DR (1990)10.1002/aic.690330115
10.1002/aic.690330703
10.1016/0098-1354(87)80012-1
10.1002/aic.690350607
{'key': 'e_1_2_8_39_1', 'volume-title': 'The Book of Why: The New Science of Cause and Effect', 'author': 'Pearl J', 'year': '2018'}
/ The Book of Why: The New Science of Cause and Effect by Pearl J (2018)- VenkatasubramanianV SuryanarasimhamKV.Causal modeling for process safety analysis. In:AIChE National Meeting 1987.
10.1007/978-1-4471-1475-8_9
{'key': 'e_1_2_8_42_1', 'first-page': '36', 'article-title': 'Adequately address abnormal operations', 'volume': '91', 'author': 'Nimmo L', 'year': '1995', 'journal-title': 'Chem Eng Prog'}
/ Chem Eng Prog / Adequately address abnormal operations by Nimmo L (1995)- CESMII Clean Energy Smart Manufacturing Innovation Institute. Available at:https://www.cesmii.org/. Accessed on December 5 2018.
{'key': 'e_1_2_8_44_1', 'first-page': '182', 'article-title': 'Artificial intelligence in process engineering: a research program', 'author': 'Stephanopoulos G', 'year': '1986', 'journal-title': 'Chem Eng Educ.'}
/ Chem Eng Educ. / Artificial intelligence in process engineering: a research program by Stephanopoulos G (1986){'key': 'e_1_2_8_45_1', 'first-page': '188', 'article-title': 'Artificial intelligence in process engineering: experiences from a graduate course', 'author': 'Venkatasubramanian V', 'year': '1986', 'journal-title': 'Chem Eng Educ'}
/ Chem Eng Educ / Artificial intelligence in process engineering: experiences from a graduate course by Venkatasubramanian V (1986){'key': 'e_1_2_8_46_1', 'volume-title': 'Computers in Chemical Engineering Education', 'author': 'Kantor JC', 'year': '1996'}
/ Computers in Chemical Engineering Education by Kantor JC (1996){'key': 'e_1_2_8_47_1', 'first-page': '22', 'article-title': 'Introduction to deep learning: part 1', 'author': 'Gupta A', 'year': '2018', 'journal-title': 'Chem Eng Prog'}
/ Chem Eng Prog / Introduction to deep learning: part 1 by Gupta A (2018){'key': 'e_1_2_8_48_1', 'volume-title': 'Neural Networks for Chemical Engineers', 'author': 'Bulsari AB', 'year': '1995'}
/ Neural Networks for Chemical Engineers by Bulsari AB (1995)10.1002/aic.690370209
10.1002/aic.690390108
- VenkatasubramanianV. Inexact reasoning in expert systems: a stochastic parallel network approach. In:Proceedings of the Second Conference on Artificial Applications pp. 191–195 1985.
10.1002/aic.690351210
10.1016/0098-1354(90)87027-M
10.1002/aic.690370112
10.1016/0098-1354(92)80055-E
10.1109/64.207428
10.1016/0098-1354(90)87026-L
10.1016/0098-1354(92)80044-A
10.1016/j.compchemeng.2004.08.010
- VenkatasubramanianV ChanK CaruthersJ.Designing engineering polymers: a case study in product design. In:AIChE Annual Meeting Miami FL 1992.
10.1016/0098-1354(93)E0023-3
10.1016/S0021-9517(02)00036-2
10.1002/aic.690470615
10.5254/1.3547762
10.1021/ie034067h
10.1002/aic.10623
10.1021/ie800343s
10.1016/0098-1354(94)E0034-K
10.1016/0098-1354(95)00144-Q
10.1016/S0098-1354(97)00002-1
10.1016/j.compchemeng.2008.01.007
10.1016/j.compchemeng.2006.05.036
10.1016/j.engappai.2006.06.010
{'key': 'e_1_2_8_74_1', 'volume-title': 'Collaborative and Distributed Chemical Engineering', 'author': 'Nagl M', 'year': '2008'}
/ Collaborative and Distributed Chemical Engineering by Nagl M (2008)- KrishnamurthyB.Information retrieval and knowledge management in catalyst chemistry discovery environments[thesis] Purdue University West Lafayette IN USA;2008.
- EvansL.The evolution of computing in chemical engineering: some perspectives and future direction. In:CACHE Trustees 40th Anniversary Meeting 2009.
10.1162/neco.2006.18.7.1527
10.1038/nature14539
{'key': 'e_1_2_8_79_1', 'volume-title': 'Advances in Neural Information Processing Systems (NIPS 1989), Denver, CO', 'author': 'Lecun Y', 'year': '1990'}
/ Advances in Neural Information Processing Systems (NIPS 1989), Denver, CO by Lecun Y (1990){'key': 'e_1_2_8_80_1', 'article-title': 'An intuitive explanation of convolutional', 'author': 'Karn U', 'year': '2016', 'journal-title': 'Neural Netw'}
/ Neural Netw / An intuitive explanation of convolutional by Karn U (2016)- CS231n Convolutional neural networks for visual recognition. Available at:http://cs231n.github.io/convolutional-networks/. Accessed on December 5 2018.
{'key': 'e_1_2_8_82_1', 'first-page': '39', 'article-title': 'Introduction to deep learning: part 2', 'author': 'Gupta A', 'year': '2018', 'journal-title': 'Chem Eng Prog'}
/ Chem Eng Prog / Introduction to deep learning: part 2 by Gupta A (2018)10.1016/j.neunet.2014.09.003
- A beginner's guide to deep reinforcement learning.Skymind. Available at:https://skymind.ai/wiki/deep-reinforcement-learning#define.
10.1002/aic.11756
{'key': 'e_1_2_8_86_1', 'first-page': '110', 'volume-title': 'Advance reasoning architectures for expert systems', 'author': 'Ungar L', 'year': '1990'}
/ Advance reasoning architectures for expert systems by Ungar L (1990)10.1016/S0098-1354(02)00160-6
10.1016/0098-1354(79)80079-4
10.1016/0951-8320(95)00052-4
10.1016/S1474-6670(17)40535-0
10.1016/S0098-1354(98)00228-2
- AldeaA.Bañares‐AlcántaraR BocioJ GramajoJ IsernD KokossisA JiménezL MorenoA RiañoD.An ontology‐based knowledge management platform. In:Proceedings of the Workshop on Information Integration on the Web (IIWeb‐03) pp. 177–182 2003.
{'key': 'e_1_2_8_93_1', 'volume-title': 'OntoCAPE: A Re‐usable Ontology for Chemical Process Engineering', 'author': 'Marquardt W', 'year': '2009'}
/ OntoCAPE: A Re‐usable Ontology for Chemical Process Engineering by Marquardt W (2009)10.1007/s12247-010-9081-3
10.1016/j.compchemeng.2009.12.009
10.1016/S0952-1976(02)00015-5
10.1016/S0098-1354(02)00150-3
10.1073/pnas.1620045114
10.11613/BM.2015.001
{'key': 'e_1_2_8_100_1', 'volume-title': "Artificial Intelligence—The Revolution Hasn't Happened Yet", 'author': 'Jordan M', 'year': '2018'}
/ Artificial Intelligence—The Revolution Hasn't Happened Yet by Jordan M (2018)10.1002/aic.690381003
10.1002/aic.690400806
- How cognitive anomaly detection and prediction works ‐ Progress DataRPM. Available at:https://www.progress.com/datarpm/how-it-works. Accessed on December 5 2018.
- KellnerT.Deep machine learning: GE and BP will connect thousands of subsea oil wells to the industrial internet. In:GE Reports 2015.
- WinickE Uptake is putting the world's data to work. In:MIT Technology Review 2018.
- Justin T.In the world of perishables forecast accuracy is key In:SupplyChainBrain 2014.
10.1016/j.compchemeng.2018.08.029
- EberK.Reinventing material science In:Continuum Magazine|NREL 2012.
10.1007/s11837-016-2000-4
10.1557/mrs.2016.93
10.1038/s41524-017-0056-5
{'key': 'e_1_2_8_112_1', 'article-title': 'Solving industrial materials problems by using machine learning across diverse computational and experimental data', 'author': 'Hutchinson M', 'year': '2018', 'journal-title': 'Bull Am Phys Soc'}
/ Bull Am Phys Soc / Solving industrial materials problems by using machine learning across diverse computational and experimental data by Hutchinson M (2018)- 2018 Data science: opportunities to transform chemical sciences and engineering: proceedings of a workshop—in brief
10.1557/mrs.2018.204
10.1088/1361-6463/aad926
10.1021/ie980682n
- KatareS PatkarP GhoshP CaruthersJM DelgassWN.A systematic framework for rational materials formulation and design. In:Proceedings of the Symposium on Materials Design Approaches and Experiences pp. 321–332 2001.
10.1073/pnas.1316533110
10.1073/pnas.1509316112
10.1038/ncomms11241
{'issue': '225502', 'key': 'e_1_2_8_121_1', 'article-title': 'Neural network approach for characterizing structural transformations by X‐ray absorption fine structure spectroscopy', 'volume': '120', 'author': 'Timoshenko J', 'year': '2018', 'journal-title': 'Phys Rev Lett'}
/ Phys Rev Lett / Neural network approach for characterizing structural transformations by X‐ray absorption fine structure spectroscopy by Timoshenko J (2018)10.1002/aic.16157
10.1021/acs.iecr.8b04015
- MLSE In:Machine Learning in Science and Engineering Conference. Carnegie Mellon University June 6–9 2018. Available athttps://events.mcs.cmu.edu/mlse/program-at-a-glance/.
10.1038/s41929-018-0142-1
- Stanford Catalysis‐Hub. Available at:https://www.catalysis-hub.org/. Accessed on Dec 1 2018.
10.1016/j.cpc.2016.05.010
10.1016/j.ces.2011.05.050
10.1016/j.compchemeng.2012.06.008
10.1016/j.cpc.2016.02.013
10.1021/acs.jpcc.7b02133
10.1021/acscentsci.7b00064
10.1021/acs.accounts.8b00087
10.1006/knac.1993.1008
10.1021/ie100246w
10.1016/j.compchemeng.2017.03.012
- Novel Materials Discovery Laboratory (Nomad). Available at:https://metainfo.nomad-coe.eu/nomadmetainfo_public/archive.html. Accessed on Dec 1 2018.
10.1021/acs.chemmater.7b03500
10.1016/S0967-0661(99)00040-4
10.1016/j.artint.2015.03.003
10.1021/acs.langmuir.7b02166
{'key': 'e_1_2_8_142_1', 'article-title': 'AI researchers allege that machine learning is alchemy', 'author': 'Hutson M', 'year': '2018', 'journal-title': 'Science'}
/ Science / AI researchers allege that machine learning is alchemy by Hutson M (2018)
Dates
Type | When |
---|---|
Created | 6 years, 8 months ago (Dec. 2, 2018, 11:54 p.m.) |
Deposited | 1 year, 11 months ago (Sept. 14, 2023, 4:18 a.m.) |
Indexed | 1 day, 3 hours ago (Aug. 20, 2025, 9:05 a.m.) |
Issued | 6 years, 8 months ago (Dec. 19, 2018) |
Published | 6 years, 8 months ago (Dec. 19, 2018) |
Published Online | 6 years, 8 months ago (Dec. 19, 2018) |
Published Print | 6 years, 6 months ago (Feb. 1, 2019) |
@article{Venkatasubramanian_2018, title={The promise of artificial intelligence in chemical engineering: Is it here, finally?}, volume={65}, ISSN={1547-5905}, url={http://dx.doi.org/10.1002/aic.16489}, DOI={10.1002/aic.16489}, number={2}, journal={AIChE Journal}, publisher={Wiley}, author={Venkatasubramanian, Venkat}, year={2018}, month=dec, pages={466–478} }