Abstract
AbstractUnderstanding the microscopic mechanisms of electrochemical reaction and material degradation is crucial for the rational design of high‐performance lithium ion batteries (LIBs). A novel nanobattery assembly and testing platform inside a transmission electron microscope (TEM) has been designed, which allows a direct study of the structural evolution of individual nanowire or nanoparticle electrodes with near‐atomic resolution in real time. In this review, recent progresses in the study of several important anode materials are summarized. The consistency between in situ and ex situ results is shown, thereby validating the new in situ testing paradigm. Comparisons between a variety of nanostructures lead to the conclusion that electrochemical reaction and mechanical degradation are material specific, size dependent, and geometrically and compositionally sensitive. For example, a highly anisotropic lithiation in Si is observed, in contrast to the nearly isotropic response in Ge. The Ge nanowires can develop a spongy network, a unique mechanism for mitigating the large volume changes during cycling. The Si nanoparticles show a critical size of ∼150 nm below which fracture is averted during lithiation, and above which surface cracking, rather than central cracking, is observed. In carbonaceous nanomaterials, the lithiated multi‐walled carbon nanotubes (MWCNTs) are drastically embrittled, while few‐layer graphene nanoribbons remain mechanically robust after lithiation. This distinct contrast manifests a strong ‘geometrical embrittlement’ effect as compared to a relatively weak ‘chemical embrittlement’ effect. In oxide nanowires, discrete cracks in ZnO nanowires are generated near the lithiation reaction front, leading to leapfrog cracking, while a mobile dislocation cloud at the reaction front is observed in SnO2 nanowires. This contrast is corroborated by ab initio calculations that indicate a strong chemical embrittlement of ZnO, but not of SnO2, after a small amount of lithium insertion. In metallic nanowires such as Al, delithiation causes pulverization, and the product nanoparticles are held in place by the surface Li‐Al‐O glass tube, suggesting possible strategies for improving electrode cyclability by coatings. In addition, a new in situ chemical lithiation method is introduced for fast screening of battery materials by conventional TEM. Evidently, in situ nanobattery experiments inside TEM are a powerful approach for advancing the fundamental understanding of electrochemical reactions and materials degradation and therefore pave the way toward rational design of high‐performance LIBs.
References
150
Referenced
374
10.1038/451652a
10.1038/nmat1368
10.1098/rsta.2010.0112
10.1002/aenm.201000010
10.1002/aenm.201000002
10.1126/science.1198591
10.1038/nnano.2007.411
10.1038/nmat2725
10.1149/1.1388178
10.1016/j.electacta.2006.02.004
10.1016/j.jpowsour.2011.04.009
10.1016/S0378-7753(98)00128-1
10.1126/science.1195628
10.1002/anie.200907319
10.1039/c1ee01918j
10.1149/1.1652421
{'key': 'e_1_2_9_17_2', 'first-page': 'A156‐A161', 'volume': '154', 'author': 'Li J.', 'year': '2007', 'journal-title': 'J. Electrochem. Soc.'}
/ J. Electrochem. Soc. by Li J. (2007){'key': 'e_1_2_9_18_2', 'first-page': 'A838‐A842', 'volume': '151', 'author': 'Hatchard T. D.', 'year': '2004', 'journal-title': 'J. Electrochem. Soc.'}
/ J. Electrochem. Soc. by Hatchard T. D. (2004)10.1038/nmat2764
10.1021/ja8086278
10.1021/ja108085d
10.1016/j.elecom.2009.12.002
10.1021/jp2060602
10.1016/j.jpcs.2007.10.017
10.1016/0022-4596(81)90487-4
10.1149/1.2407783
10.1016/S1359-6454(02)00514-1
10.1016/S0378-7753(03)00303-3
10.1016/S0378-7753(99)00139-1
10.1021/nl201684d
10.1021/nl200412p
10.1557/JMR.2010.0198
10.1038/nnano.2011.161
10.1021/nn204476h
10.1063/1.3585655
10.1021/nl2024118
10.1021/nl202088h
10.1021/nn202071y
{'key': 'e_1_2_9_39_2', 'author': 'Liu X. H.', 'year': '2012', 'journal-title': 'Carbon'}
/ Carbon by Liu X. H. (2012)10.1021/nl201376j
10.1021/nn200770p
10.1103/PhysRevLett.106.248302
10.1039/b705421c
10.1149/1.2127495
{'key': 'e_1_2_9_45_2', 'first-page': 'A103‐A108', 'volume': '154', 'author': 'Obrovac M. N.', 'year': '2007', 'journal-title': 'J. Electrochem. Soc.'}
/ J. Electrochem. Soc. by Obrovac M. N. (2007)10.1002/adfm.201002487
10.1016/S0038-1098(02)00849-9
10.1016/j.jpowsour.2010.11.155
10.1002/anie.200601676
10.1021/nl8036323
10.1002/aenm.201100259
10.1021/nl902058c
10.1016/j.jpowsour.2005.03.110
10.1063/1.3238572
10.1021/ja1031997
10.1007/s11814-009-0172-0
10.1002/aenm.201100426
10.1002/aenm.201100071
{'key': 'e_1_2_9_59_2', 'first-page': '333', 'volume-title': 'Advanced Materials and Processing', 'author': 'Kong M. H.', 'year': '2007'}
/ Advanced Materials and Processing by Kong M. H. (2007)10.1007/s10832-008-9471-9
10.1016/j.electacta.2010.06.087
10.1149/1.3055984
10.1016/j.electacta.2009.12.076
10.1021/nl0727157
10.1021/jz201432d
10.1557/JMR.2010.0184
10.1016/j.electacta.2007.12.015
10.1149/1.2820666
10.1002/anie.201103062
10.1039/C0EE00552E
{'key': 'e_1_2_9_71_2', 'first-page': 'A42‐A45', 'volume': '11', 'author': 'Yoon S.', 'year': '2008', 'journal-title': 'Electrochem. Solid‐State Lett.'}
/ Electrochem. Solid‐State Lett. by Yoon S. (2008)10.1149/1.1697412
10.1016/j.jallcom.2010.01.142
10.1016/j.jpowsour.2006.09.084
10.1002/adfm.200701245
10.1016/j.jpowsour.2008.07.076
10.1149/1.2123803
10.1021/nl201787r
10.1149/1.2086277
{'key': 'e_1_2_9_80_2', 'first-page': '1101', 'volume': '108', 'author': 'Wu B. Q.', 'year': '2010', 'journal-title': 'J. Appl. Phys.'}
/ J. Appl. Phys. by Wu B. Q. (2010){'key': 'e_1_2_9_81_2', 'first-page': '549', 'volume': '5', 'author': 'Gladyshevskii E. I.', 'year': '1960', 'journal-title': 'Soviet Physics, Crystallography'}
/ Soviet Physics, Crystallography by Gladyshevskii E. I. (1960)10.1107/S0365110X65000257
- X. H.Liu J. W.Wang H.Yang S.Huang F.Fan X.Huang Y.Liu S.Krylyuk J.Yoo S. A.Dayeh A. V.Davydov S. X.Mao S. T.Picraux S.Zhang J.Li T.Zhu J. Y.Huang 2012 unpublished.
10.1016/j.jpowsour.2003.11.014
10.1016/j.jmps.2011.06.003
10.1016/j.ijsolstr.2010.02.001
10.1016/j.ijsolstr.2011.04.005
10.1103/PhysRevLett.107.045503
10.1016/S0378-7753(02)00596-7
10.1039/b904116h
10.1021/nn100400r
10.1016/S0009-2614(99)00486-8
10.1016/j.carbon.2004.05.039
10.1016/j.carbon.2009.06.045
10.1016/S0009-2614(00)00851-4
10.1016/S0921-4526(02)00876-1
10.1038/nnano.2010.116
10.1103/PhysRevLett.88.015502
10.1002/smll.200500496
10.1016/S0921-5093(01)01807-X
10.1016/j.carbon.2006.02.038
10.1002/adfm.200801242
10.1039/C0EE00256A
10.1038/35037535
10.1073/pnas.0707364105
10.1103/PhysRevB.82.125416
{'key': 'e_1_2_9_107_2', 'first-page': 'A741‐A747', 'volume': '157', 'author': 'Qi Y.', 'year': '2010', 'journal-title': 'J. Electrochem. Soc.'}
/ J. Electrochem. Soc. by Qi Y. (2010)10.1016/j.jpowsour.2011.02.022
10.1039/c0ee00683a
10.1557/mrs2009.122
10.1016/S0167-2738(00)00296-4
10.1007/BF02376065
10.1007/BF00727235
10.1016/0022-3115(80)90136-1
10.1016/0022-3115(92)90337-K
10.1016/0036-9748(74)90062-3
10.1016/0167-2738(90)90062-V
10.1016/S0378-7753(96)02547-5
10.1016/j.matchemphys.2009.05.041
10.1016/j.jpowsour.2009.11.102
10.1039/b919877f
10.1016/j.electacta.2009.12.104
10.1016/j.jpowsour.2010.10.044
10.1016/j.electacta.2005.11.015
10.1016/j.jpowsour.2003.08.037
10.1149/1.1526782
10.1016/j.ssi.2004.01.016
10.1021/cm0517115
{'key': 'e_1_2_9_129_2', 'first-page': 'A1337‐A1341', 'volume': '149', 'author': 'Kim Y. J.', 'year': '2002', 'journal-title': 'J. Electrochem. Soc.'}
/ J. Electrochem. Soc. by Kim Y. J. (2002)10.1016/j.jpowsour.2003.08.032
10.1021/cm0201403
10.1149/1.1429927
10.1039/b101677f
10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
10.1149/1.1503202
10.1016/j.jpowsour.2003.11.015
10.1016/j.ssi.2003.11.010
10.1016/S0167-2738(02)00071-1
10.1016/j.jpowsour.2004.01.036
10.1016/j.jpowsour.2004.05.029
10.1149/1.1465375
10.1149/1.1391149
10.1021/nl1030198
10.1002/adma.200903951
{'key': 'e_1_2_9_145_2', 'first-page': 'A75‐A81', 'volume': '157', 'author': 'Jung Y. S.', 'year': '2010', 'journal-title': 'J. Electrochem. Soc.'}
/ J. Electrochem. Soc. by Jung Y. S. (2010)10.1002/adma.201102568
10.1063/1.328164
10.1002/adma.201101915
10.1103/PhysRevB.53.5335
10.1103/PhysRevLett.91.135502
Dates
Type | When |
---|---|
Created | 13 years, 2 months ago (May 31, 2012, 2:56 a.m.) |
Deposited | 1 year, 11 months ago (Sept. 13, 2023, 2:22 a.m.) |
Indexed | 2 weeks, 5 days ago (Aug. 2, 2025, 12:28 a.m.) |
Issued | 13 years, 2 months ago (May 31, 2012) |
Published | 13 years, 2 months ago (May 31, 2012) |
Published Online | 13 years, 2 months ago (May 31, 2012) |
Published Print | 13 years, 1 month ago (July 1, 2012) |
@article{Liu_2012, title={In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures}, volume={2}, ISSN={1614-6840}, url={http://dx.doi.org/10.1002/aenm.201200024}, DOI={10.1002/aenm.201200024}, number={7}, journal={Advanced Energy Materials}, publisher={Wiley}, author={Liu, Xiao Hua and Liu, Yang and Kushima, Akihiro and Zhang, Sulin and Zhu, Ting and Li, Ju and Huang, Jian Yu}, year={2012}, month=may, pages={722–741} }