Crossref journal-article
Wiley
Advanced Energy Materials (311)
Abstract

AbstractUnderstanding the microscopic mechanisms of electrochemical reaction and material degradation is crucial for the rational design of high‐performance lithium ion batteries (LIBs). A novel nanobattery assembly and testing platform inside a transmission electron microscope (TEM) has been designed, which allows a direct study of the structural evolution of individual nanowire or nanoparticle electrodes with near‐atomic resolution in real time. In this review, recent progresses in the study of several important anode materials are summarized. The consistency between in situ and ex situ results is shown, thereby validating the new in situ testing paradigm. Comparisons between a variety of nanostructures lead to the conclusion that electrochemical reaction and mechanical degradation are material specific, size dependent, and geometrically and compositionally sensitive. For example, a highly anisotropic lithiation in Si is observed, in contrast to the nearly isotropic response in Ge. The Ge nanowires can develop a spongy network, a unique mechanism for mitigating the large volume changes during cycling. The Si nanoparticles show a critical size of ∼150 nm below which fracture is averted during lithiation, and above which surface cracking, rather than central cracking, is observed. In carbonaceous nanomaterials, the lithiated multi‐walled carbon nanotubes (MWCNTs) are drastically embrittled, while few‐layer graphene nanoribbons remain mechanically robust after lithiation. This distinct contrast manifests a strong ‘geometrical embrittlement’ effect as compared to a relatively weak ‘chemical embrittlement’ effect. In oxide nanowires, discrete cracks in ZnO nanowires are generated near the lithiation reaction front, leading to leapfrog cracking, while a mobile dislocation cloud at the reaction front is observed in SnO2 nanowires. This contrast is corroborated by ab initio calculations that indicate a strong chemical embrittlement of ZnO, but not of SnO2, after a small amount of lithium insertion. In metallic nanowires such as Al, delithiation causes pulverization, and the product nanoparticles are held in place by the surface Li‐Al‐O glass tube, suggesting possible strategies for improving electrode cyclability by coatings. In addition, a new in situ chemical lithiation method is introduced for fast screening of battery materials by conventional TEM. Evidently, in situ nanobattery experiments inside TEM are a powerful approach for advancing the fundamental understanding of electrochemical reactions and materials degradation and therefore pave the way toward rational design of high‐performance LIBs.

Bibliography

Liu, X. H., Liu, Y., Kushima, A., Zhang, S., Zhu, T., Li, J., & Huang, J. Y. (2012). In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures. Advanced Energy Materials, 2(7), 722–741. Portico.

Authors 7
  1. Xiao Hua Liu (first)
  2. Yang Liu (additional)
  3. Akihiro Kushima (additional)
  4. Sulin Zhang (additional)
  5. Ting Zhu (additional)
  6. Ju Li (additional)
  7. Jian Yu Huang (additional)
References 150 Referenced 374
  1. 10.1038/451652a
  2. 10.1038/nmat1368
  3. 10.1098/rsta.2010.0112
  4. 10.1002/aenm.201000010
  5. 10.1002/aenm.201000002
  6. 10.1126/science.1198591
  7. 10.1038/nnano.2007.411
  8. 10.1038/nmat2725
  9. 10.1149/1.1388178
  10. 10.1016/j.electacta.2006.02.004
  11. 10.1016/j.jpowsour.2011.04.009
  12. 10.1016/S0378-7753(98)00128-1
  13. 10.1126/science.1195628
  14. 10.1002/anie.200907319
  15. 10.1039/c1ee01918j
  16. 10.1149/1.1652421
  17. {'key': 'e_1_2_9_17_2', 'first-page': 'A156‐A161', 'volume': '154', 'author': 'Li J.', 'year': '2007', 'journal-title': 'J. Electrochem. Soc.'} / J. Electrochem. Soc. by Li J. (2007)
  18. {'key': 'e_1_2_9_18_2', 'first-page': 'A838‐A842', 'volume': '151', 'author': 'Hatchard T. D.', 'year': '2004', 'journal-title': 'J. Electrochem. Soc.'} / J. Electrochem. Soc. by Hatchard T. D. (2004)
  19. 10.1038/nmat2764
  20. 10.1021/ja8086278
  21. 10.1021/ja108085d
  22. 10.1016/j.elecom.2009.12.002
  23. 10.1021/jp2060602
  24. 10.1016/j.jpcs.2007.10.017
  25. 10.1016/0022-4596(81)90487-4
  26. 10.1149/1.2407783
  27. 10.1016/S1359-6454(02)00514-1
  28. 10.1016/S0378-7753(03)00303-3
  29. 10.1016/S0378-7753(99)00139-1
  30. 10.1021/nl201684d
  31. 10.1021/nl200412p
  32. 10.1557/JMR.2010.0198
  33. 10.1038/nnano.2011.161
  34. 10.1021/nn204476h
  35. 10.1063/1.3585655
  36. 10.1021/nl2024118
  37. 10.1021/nl202088h
  38. 10.1021/nn202071y
  39. {'key': 'e_1_2_9_39_2', 'author': 'Liu X. H.', 'year': '2012', 'journal-title': 'Carbon'} / Carbon by Liu X. H. (2012)
  40. 10.1021/nl201376j
  41. 10.1021/nn200770p
  42. 10.1103/PhysRevLett.106.248302
  43. 10.1039/b705421c
  44. 10.1149/1.2127495
  45. {'key': 'e_1_2_9_45_2', 'first-page': 'A103‐A108', 'volume': '154', 'author': 'Obrovac M. N.', 'year': '2007', 'journal-title': 'J. Electrochem. Soc.'} / J. Electrochem. Soc. by Obrovac M. N. (2007)
  46. 10.1002/adfm.201002487
  47. 10.1016/S0038-1098(02)00849-9
  48. 10.1016/j.jpowsour.2010.11.155
  49. 10.1002/anie.200601676
  50. 10.1021/nl8036323
  51. 10.1002/aenm.201100259
  52. 10.1021/nl902058c
  53. 10.1016/j.jpowsour.2005.03.110
  54. 10.1063/1.3238572
  55. 10.1021/ja1031997
  56. 10.1007/s11814-009-0172-0
  57. 10.1002/aenm.201100426
  58. 10.1002/aenm.201100071
  59. {'key': 'e_1_2_9_59_2', 'first-page': '333', 'volume-title': 'Advanced Materials and Processing', 'author': 'Kong M. H.', 'year': '2007'} / Advanced Materials and Processing by Kong M. H. (2007)
  60. 10.1007/s10832-008-9471-9
  61. 10.1016/j.electacta.2010.06.087
  62. 10.1149/1.3055984
  63. 10.1016/j.electacta.2009.12.076
  64. 10.1021/nl0727157
  65. 10.1021/jz201432d
  66. 10.1557/JMR.2010.0184
  67. 10.1016/j.electacta.2007.12.015
  68. 10.1149/1.2820666
  69. 10.1002/anie.201103062
  70. 10.1039/C0EE00552E
  71. {'key': 'e_1_2_9_71_2', 'first-page': 'A42‐A45', 'volume': '11', 'author': 'Yoon S.', 'year': '2008', 'journal-title': 'Electrochem. Solid‐State Lett.'} / Electrochem. Solid‐State Lett. by Yoon S. (2008)
  72. 10.1149/1.1697412
  73. 10.1016/j.jallcom.2010.01.142
  74. 10.1016/j.jpowsour.2006.09.084
  75. 10.1002/adfm.200701245
  76. 10.1016/j.jpowsour.2008.07.076
  77. 10.1149/1.2123803
  78. 10.1021/nl201787r
  79. 10.1149/1.2086277
  80. {'key': 'e_1_2_9_80_2', 'first-page': '1101', 'volume': '108', 'author': 'Wu B. Q.', 'year': '2010', 'journal-title': 'J. Appl. Phys.'} / J. Appl. Phys. by Wu B. Q. (2010)
  81. {'key': 'e_1_2_9_81_2', 'first-page': '549', 'volume': '5', 'author': 'Gladyshevskii E. I.', 'year': '1960', 'journal-title': 'Soviet Physics, Crystallography'} / Soviet Physics, Crystallography by Gladyshevskii E. I. (1960)
  82. 10.1107/S0365110X65000257
  83. X. H.Liu J. W.Wang H.Yang S.Huang F.Fan X.Huang Y.Liu S.Krylyuk J.Yoo S. A.Dayeh A. V.Davydov S. X.Mao S. T.Picraux S.Zhang J.Li T.Zhu J. Y.Huang 2012 unpublished.
  84. 10.1016/j.jpowsour.2003.11.014
  85. 10.1016/j.jmps.2011.06.003
  86. 10.1016/j.ijsolstr.2010.02.001
  87. 10.1016/j.ijsolstr.2011.04.005
  88. 10.1103/PhysRevLett.107.045503
  89. 10.1016/S0378-7753(02)00596-7
  90. 10.1039/b904116h
  91. 10.1021/nn100400r
  92. 10.1016/S0009-2614(99)00486-8
  93. 10.1016/j.carbon.2004.05.039
  94. 10.1016/j.carbon.2009.06.045
  95. 10.1016/S0009-2614(00)00851-4
  96. 10.1016/S0921-4526(02)00876-1
  97. 10.1038/nnano.2010.116
  98. 10.1103/PhysRevLett.88.015502
  99. 10.1002/smll.200500496
  100. 10.1016/S0921-5093(01)01807-X
  101. 10.1016/j.carbon.2006.02.038
  102. 10.1002/adfm.200801242
  103. 10.1039/C0EE00256A
  104. 10.1038/35037535
  105. 10.1073/pnas.0707364105
  106. 10.1103/PhysRevB.82.125416
  107. {'key': 'e_1_2_9_107_2', 'first-page': 'A741‐A747', 'volume': '157', 'author': 'Qi Y.', 'year': '2010', 'journal-title': 'J. Electrochem. Soc.'} / J. Electrochem. Soc. by Qi Y. (2010)
  108. 10.1016/j.jpowsour.2011.02.022
  109. 10.1039/c0ee00683a
  110. 10.1557/mrs2009.122
  111. 10.1016/S0167-2738(00)00296-4
  112. 10.1007/BF02376065
  113. 10.1007/BF00727235
  114. 10.1016/0022-3115(80)90136-1
  115. 10.1016/0022-3115(92)90337-K
  116. 10.1016/0036-9748(74)90062-3
  117. 10.1016/0167-2738(90)90062-V
  118. 10.1016/S0378-7753(96)02547-5
  119. 10.1016/j.matchemphys.2009.05.041
  120. 10.1016/j.jpowsour.2009.11.102
  121. 10.1039/b919877f
  122. 10.1016/j.electacta.2009.12.104
  123. 10.1016/j.jpowsour.2010.10.044
  124. 10.1016/j.electacta.2005.11.015
  125. 10.1016/j.jpowsour.2003.08.037
  126. 10.1149/1.1526782
  127. 10.1016/j.ssi.2004.01.016
  128. 10.1021/cm0517115
  129. {'key': 'e_1_2_9_129_2', 'first-page': 'A1337‐A1341', 'volume': '149', 'author': 'Kim Y. J.', 'year': '2002', 'journal-title': 'J. Electrochem. Soc.'} / J. Electrochem. Soc. by Kim Y. J. (2002)
  130. 10.1016/j.jpowsour.2003.08.032
  131. 10.1021/cm0201403
  132. 10.1149/1.1429927
  133. 10.1039/b101677f
  134. 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
  135. 10.1149/1.1503202
  136. 10.1016/j.jpowsour.2003.11.015
  137. 10.1016/j.ssi.2003.11.010
  138. 10.1016/S0167-2738(02)00071-1
  139. 10.1016/j.jpowsour.2004.01.036
  140. 10.1016/j.jpowsour.2004.05.029
  141. 10.1149/1.1465375
  142. 10.1149/1.1391149
  143. 10.1021/nl1030198
  144. 10.1002/adma.200903951
  145. {'key': 'e_1_2_9_145_2', 'first-page': 'A75‐A81', 'volume': '157', 'author': 'Jung Y. S.', 'year': '2010', 'journal-title': 'J. Electrochem. Soc.'} / J. Electrochem. Soc. by Jung Y. S. (2010)
  146. 10.1002/adma.201102568
  147. 10.1063/1.328164
  148. 10.1002/adma.201101915
  149. 10.1103/PhysRevB.53.5335
  150. 10.1103/PhysRevLett.91.135502
Dates
Type When
Created 13 years, 2 months ago (May 31, 2012, 2:56 a.m.)
Deposited 1 year, 11 months ago (Sept. 13, 2023, 2:22 a.m.)
Indexed 2 weeks, 5 days ago (Aug. 2, 2025, 12:28 a.m.)
Issued 13 years, 2 months ago (May 31, 2012)
Published 13 years, 2 months ago (May 31, 2012)
Published Online 13 years, 2 months ago (May 31, 2012)
Published Print 13 years, 1 month ago (July 1, 2012)
Funders 0

None

@article{Liu_2012, title={In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures}, volume={2}, ISSN={1614-6840}, url={http://dx.doi.org/10.1002/aenm.201200024}, DOI={10.1002/aenm.201200024}, number={7}, journal={Advanced Energy Materials}, publisher={Wiley}, author={Liu, Xiao Hua and Liu, Yang and Kushima, Akihiro and Zhang, Sulin and Zhu, Ting and Li, Ju and Huang, Jian Yu}, year={2012}, month=may, pages={722–741} }